o
    g09                     @  s   d Z ddlmZ ddlmZmZ ddlZddlZddl	m
Z
 dd Zdd	 Zd
d Zdd Zdd Zdd Zd$ddZdd Zd%ddZd&ddZ	d%d'd"d#ZdS )(zV
Module that contains many useful utilities
for validating data or function arguments
    )annotations)IterableSequenceN)is_boolc              	   C  sl   |dk rt dt|t|kr4t|| }t|| }|dkr"dnd}t|  d| d| d| d	d
S )z
    Checks whether 'args' has length of at most 'compat_args'. Raises
    a TypeError if that is not the case, similar to in Python when a
    function is called with too many arguments.
    r   z*'max_fname_arg_count' must be non-negative   argument	argumentsz() takes at most  z (z given)N)
ValueErrorlen	TypeError)fnameargsmax_fname_arg_countcompat_argsmax_arg_countactual_arg_countr    r   U/home/ubuntu/cloudmapper/venv/lib/python3.10/site-packages/pandas/util/_validators.py_check_arg_length   s   r   c              	   C  s   |D ]J}z)|| }|| }|dur|du s|du r |dur d}n||k}t |s,tdW n ty>   || || u }Y nw |sLtd| d|  dqdS )z
    Check that the keys in `arg_val_dict` are mapped to their
    default values as specified in `compat_args`.

    Note that this function is to be called only when it has been
    checked that arg_val_dict.keys() is a subset of compat_args
    NFz'match' is not a booleanzthe 'z=' parameter is not supported in the pandas implementation of z())r   r
   )r   arg_val_dictr   keyv1v2matchr   r   r   _check_for_default_values&   s*    r   c                 C  s,   t | ||| tt||}t| || dS )a  
    Checks whether the length of the `*args` argument passed into a function
    has at most `len(compat_args)` arguments and whether or not all of these
    elements in `args` are set to their default values.

    Parameters
    ----------
    fname : str
        The name of the function being passed the `*args` parameter
    args : tuple
        The `*args` parameter passed into a function
    max_fname_arg_count : int
        The maximum number of arguments that the function `fname`
        can accept, excluding those in `args`. Used for displaying
        appropriate error messages. Must be non-negative.
    compat_args : dict
        A dictionary of keys and their associated default values.
        In order to accommodate buggy behaviour in some versions of `numpy`,
        where a signature displayed keyword arguments but then passed those
        arguments **positionally** internally when calling downstream
        implementations, a dict ensures that the original
        order of the keyword arguments is enforced.

    Raises
    ------
    TypeError
        If `args` contains more values than there are `compat_args`
    ValueError
        If `args` contains values that do not correspond to those
        of the default values specified in `compat_args`
    N)r   dictzipr   )r   r   r   r   kwargsr   r   r   validate_argsL   s    r   c                 C  s8   t |t | }|rt|d }t|  d| ddS )z}
    Checks whether 'kwargs' contains any keys that are not
    in 'compat_args' and raises a TypeError if there is one.
    r   z'() got an unexpected keyword argument ''N)setlistr   )r   r   r   diffbad_argr   r   r   _check_for_invalid_keysu   s
   r%   c                 C  s$   |  }t| || t| || dS )a  
    Checks whether parameters passed to the **kwargs argument in a
    function `fname` are valid parameters as specified in `*compat_args`
    and whether or not they are set to their default values.

    Parameters
    ----------
    fname : str
        The name of the function being passed the `**kwargs` parameter
    kwargs : dict
        The `**kwargs` parameter passed into `fname`
    compat_args: dict
        A dictionary of keys that `kwargs` is allowed to have and their
        associated default values

    Raises
    ------
    TypeError if `kwargs` contains keys not in `compat_args`
    ValueError if `kwargs` contains keys in `compat_args` that do not
    map to the default values specified in `compat_args`
    N)copyr%   r   )r   r   r   kwdsr   r   r   validate_kwargs   s   r(   c                 C  sh   t | |t|  || tt||}|D ]}||v r&t|  d| dq|| t| || dS )a  
    Checks whether parameters passed to the *args and **kwargs argument in a
    function `fname` are valid parameters as specified in `*compat_args`
    and whether or not they are set to their default values.

    Parameters
    ----------
    fname: str
        The name of the function being passed the `**kwargs` parameter
    args: tuple
        The `*args` parameter passed into a function
    kwargs: dict
        The `**kwargs` parameter passed into `fname`
    max_fname_arg_count: int
        The minimum number of arguments that the function `fname`
        requires, excluding those in `args`. Used for displaying
        appropriate error messages. Must be non-negative.
    compat_args: dict
        A dictionary of keys that `kwargs` is allowed to
        have and their associated default values.

    Raises
    ------
    TypeError if `args` contains more values than there are
    `compat_args` OR `kwargs` contains keys not in `compat_args`
    ValueError if `args` contains values not at the default value (`None`)
    `kwargs` contains keys in `compat_args` that do not map to the default
    value as specified in `compat_args`

    See Also
    --------
    validate_args : Purely args validation.
    validate_kwargs : Purely kwargs validation.

    z-() got multiple values for keyword argument 'r    N)r   tuplevaluesr   r   r   updater(   )r   r   r   r   r   	args_dictr   r   r   r   validate_args_and_kwargs   s   &
r-   TFc                 C  sN   t | }|r|p| du }|r|pt| t}|s%td| dt| j d| S )aR  
    Ensure that argument passed in arg_name can be interpreted as boolean.

    Parameters
    ----------
    value : bool
        Value to be validated.
    arg_name : str
        Name of the argument. To be reflected in the error message.
    none_allowed : bool, default True
        Whether to consider None to be a valid boolean.
    int_allowed : bool, default False
        Whether to consider integer value to be a valid boolean.

    Returns
    -------
    value
        The same value as input.

    Raises
    ------
    ValueError
        If the value is not a valid boolean.
    NzFor argument "z$" expected type bool, received type .)r   
isinstanceintr
   type__name__)valuearg_namenone_allowedint_allowed
good_valuer   r   r   validate_bool_kwarg   s   r8   c              	     sl  i }d v rt  fdd| jD rd}t|| v r9|r*| d| d}t||  dd} | ||<   D ]\}}	z| |}
W n	 tyQ   Y q=w |	||
< q=t|dkr`	 |S t|dkrw|  dd}|d ||< |S t|d	krd v rd
}t|d| d| d}tj	|t
dd |d || d< |d || d< |S d| d}t|)aw  
    Argument handler for mixed index, columns / axis functions

    In an attempt to handle both `.method(index, columns)`, and
    `.method(arg, axis=.)`, we have to do some bad things to argument
    parsing. This translates all arguments to `{index=., columns=.}` style.

    Parameters
    ----------
    data : DataFrame
    args : tuple
        All positional arguments from the user
    kwargs : dict
        All keyword arguments from the user
    arg_name, method_name : str
        Used for better error messages

    Returns
    -------
    kwargs : dict
        A dictionary of keyword arguments. Doesn't modify ``kwargs``
        inplace, so update them with the return value here.

    Examples
    --------
    >>> df._validate_axis_style_args((str.upper,), {'columns': id},
    ...                              'mapper', 'rename')
    {'columns': <function id>, 'index': <method 'upper' of 'str' objects>}

    This emits a warning
    >>> df._validate_axis_style_args((str.upper, id), {},
    ...                              'mapper', 'rename')
    {'columns': <function id>, 'index': <method 'upper' of 'str' objects>}
    axisc                 3  s    | ]}| v V  qd S )Nr   ).0xr   r   r   	<genexpr>'  s    z+validate_axis_style_args.<locals>.<genexpr>z;Cannot specify both 'axis' and any of 'index' or 'columns'.z# got multiple values for argument 'r    r   r      z:Cannot specify both 'axis' and any of 'index' or 'columns'zInterpreting call
	'.z(a, b)' as 
	'.z(index=a, columns=b)'.
Use named arguments to remove any ambiguity. In the future, using positional arguments for 'index' or 'columns' will raise a 'TypeError'.   )
stacklevelzCannot specify all of 'z', 'index', 'columns'.)any_AXIS_TO_AXIS_NUMBERr   _get_axis_namegetitemsr
   r   warningswarnFutureWarning)datar   r   r4   method_nameoutmsgr9   kvaxr   r<   r   validate_axis_style_args   sL   % 
rP   c                 C  s   ddl m} | du r|du rtd| du r"|dur"||}| |fS | durB|du rB|r>t| ttfr>tdt| j d| |fS | durN|durNtd| |fS )a$  
    Validate the keyword arguments to 'fillna'.

    This checks that exactly one of 'value' and 'method' is specified.
    If 'method' is specified, this validates that it's a valid method.

    Parameters
    ----------
    value, method : object
        The 'value' and 'method' keyword arguments for 'fillna'.
    validate_scalar_dict_value : bool, default True
        Whether to validate that 'value' is a scalar or dict. Specifically,
        validate that it is not a list or tuple.

    Returns
    -------
    value, method : object
    r   )clean_fill_methodNz(Must specify a fill 'value' or 'method'.z>"value" parameter must be a scalar or dict, but you passed a ""z)Cannot specify both 'value' and 'method'.)	pandas.core.missingrQ   r
   r/   r"   r)   r   r1   r2   )r3   methodvalidate_scalar_dict_valuerQ   r   r   r   validate_fillna_kwargs\  s"   rV   qfloat | Iterable[float]return
np.ndarrayc                 C  sl   t | }d}|jdkr"d|  krdks n t||d |S tdd |D s4t||d |S )a  
    Validate percentiles (used by describe and quantile).

    This function checks if the given float or iterable of floats is a valid percentile
    otherwise raises a ValueError.

    Parameters
    ----------
    q: float or iterable of floats
        A single percentile or an iterable of percentiles.

    Returns
    -------
    ndarray
        An ndarray of the percentiles if valid.

    Raises
    ------
    ValueError if percentiles are not in given interval([0, 1]).
    zApercentiles should all be in the interval [0, 1]. Try {} instead.r   r   g      Y@c                 s  s(    | ]}d |  kodkn  V  qdS )r   r   Nr   )r:   qsr   r   r   r=     s   & z&validate_percentile.<locals>.<genexpr>)npasarrayndimr
   formatall)rW   q_arrrL   r   r   r   validate_percentile  s   

rb   	ascending!bool | int | Sequence[bool | int]c                   s<   ddd t | ttfst| dfi  S  fdd| D S )z8Validate ``ascending`` kwargs for ``sort_index`` method.FT)r5   r6   rc   c                   s   g | ]}t |d fi  qS rc   )r8   )r:   itemr<   r   r   
<listcomp>  s    z&validate_ascending.<locals>.<listcomp>)r/   r"   r)   r8   re   r   r<   r   validate_ascending  s   
rh   )TF)T)rW   rX   rY   rZ   )rc   rd   )__doc__
__future__r   typingr   r   rF   numpyr\   pandas.core.dtypes.commonr   r   r   r   r%   r(   r-   r8   rP   rV   rb   rh   r   r   r   r   <module>   s$    &)
8(
_
'#