o
    g1                     @  s  d dl mZ d dlmZmZmZmZmZmZ d dl	Z	d dl
Zd dlZd dlZd dlZd dlmZ d dl
mZ d dlmZ d dlmZmZ d dlmZ g d	Zd
d ZeeZejraejdde_dddZG dd deZerd dlmZ G dd deZ neZ dddZ!e!dd Z"e# e"_$dd d!Z%dd#d$Z&	&	(dd)d*Z'd+d, Z(dd-d.Z)dd/d0Z*d1d2 Z+dd4d5Z,dd6d7Z-dd8d9Z.d:d; Z/d<d= Z0d>d? Z1	"	"ddBdCZ2d(dDd(d(gddEfd(dFg dGddHfdFdIg dJdKdLfdDdMg dNdOdPfddQg dRdSdTfd(dUg dVdWdXfdYdZg d[d\d]fd^d_g d`dadbfdcddg dedfdgfddhg didjdkfdldmg dndodpfd(dqg drdsdtfdudvg dwdxdyfdYdzg d{d|d}fd~Z3dddZ4dd Z5edddgZ6ddIdd"ddddZ7dS )    )annotations)TYPE_CHECKINGCallableDictTupleAnycastN)
namedtuple)trapz)roots_legendre)gammaln	logsumexp)
_rng_spawn)
fixed_quad
quadraturerombergromb	trapezoidr
   simpssimpsoncumulative_trapezoidcumtrapznewton_cotesAccuracyWarningc                 C  s6   t j| j| j| j| j| jd}t|| }| j	|_	|S )zBBased on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard))nameargdefsclosure)
typesFunctionType__code____globals____name____defaults____closure__	functoolsupdate_wrapper__kwdefaults__)fg r)   Y/home/ubuntu/cloudmapper/venv/lib/python3.10/site-packages/scipy/integrate/_quadrature.py
_copy_func   s   r+   zsum, cumsumznumpy.cumsum      ?c                 C  s   t | |||dS )z}An alias of `trapezoid`.

    `trapz` is kept for backwards compatibility. For new code, prefer
    `trapezoid` instead.
    )xdxaxis)r   )yr.   r/   r0   r)   r)   r*   r
   +   s   r
   c                   @  s   e Zd ZdS )r   N)r!   
__module____qualname__r)   r)   r)   r*   r   4   s    r   )Protocolc                   @  s   e Zd ZU ded< dS )CacheAttributeszDict[int, Tuple[Any, Any]]cacheN)r!   r2   r3   __annotations__r)   r)   r)   r*   r5   =   s   
 r5   funcr   returnc                 C  s
   t t| S N)r   r5   r8   r)   r)   r*   cache_decoratorC   s   
r<   c                 C  s,   | t jv r
t j|  S t| t j| < t j|  S )zX
    Cache roots_legendre results to speed up calls of the fixed_quad
    function.
    )_cached_roots_legendrer6   r   )nr)   r)   r*   r=   G   s   


r=   r)      c                 C  sx   t |\}}t|}t|st|rtd|| |d  d | }|| d tj|| |g|R   dd dfS )a  
    Compute a definite integral using fixed-order Gaussian quadrature.

    Integrate `func` from `a` to `b` using Gaussian quadrature of
    order `n`.

    Parameters
    ----------
    func : callable
        A Python function or method to integrate (must accept vector inputs).
        If integrating a vector-valued function, the returned array must have
        shape ``(..., len(x))``.
    a : float
        Lower limit of integration.
    b : float
        Upper limit of integration.
    args : tuple, optional
        Extra arguments to pass to function, if any.
    n : int, optional
        Order of quadrature integration. Default is 5.

    Returns
    -------
    val : float
        Gaussian quadrature approximation to the integral
    none : None
        Statically returned value of None

    See Also
    --------
    quad : adaptive quadrature using QUADPACK
    dblquad : double integrals
    tplquad : triple integrals
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    romb : integrators for sampled data
    simpson : integrators for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrator
    odeint : ODE integrator

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> f = lambda x: x**8
    >>> integrate.fixed_quad(f, 0.0, 1.0, n=4)
    (0.1110884353741496, None)
    >>> integrate.fixed_quad(f, 0.0, 1.0, n=5)
    (0.11111111111111102, None)
    >>> print(1/9.0)  # analytical result
    0.1111111111111111

    >>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=4)
    (0.9999999771971152, None)
    >>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=5)
    (1.000000000039565, None)
    >>> np.sin(np.pi/2)-np.sin(0)  # analytical result
    1.0

    z8Gaussian quadrature is only available for finite limits.          @r-   r0   N)r=   nprealisinf
ValueErrorsum)r8   abargsr>   r.   wr1   r)   r)   r*   r   W   s   >
.r   Fc                   s(   |r fdd}|S  fdd}|S )ao  Vectorize the call to a function.

    This is an internal utility function used by `romberg` and
    `quadrature` to create a vectorized version of a function.

    If `vec_func` is True, the function `func` is assumed to take vector
    arguments.

    Parameters
    ----------
    func : callable
        User defined function.
    args : tuple, optional
        Extra arguments for the function.
    vec_func : bool, optional
        True if the function func takes vector arguments.

    Returns
    -------
    vfunc : callable
        A function that will take a vector argument and return the
        result.

    c                   s   | g R  S r:   r)   r.   rJ   r8   r)   r*   vfunc      zvectorize1.<locals>.vfuncc                   s   t | r| g R  S t | } | d g R  }t| }t|dt|}t j|f|d}||d< td|D ]}| | g R  ||< q9|S )Nr   dtyperP   r@   )rC   isscalarasarraylengetattrtypeemptyrange)r.   y0r>   rP   outputirM   r)   r*   rN      s   

r)   )r8   rJ   vec_funcrN   r)   rM   r*   
vectorize1   s
   r]   "\O>2   Tr@   c	                 C  s   t |ts|f}t| ||d}	tj}
tj}t|d |}t||d D ]%}t|	||d|d }t||
 }|}
||k sC||t|
 k rH |
|fS q#t	
d||f t |
|fS )a  
    Compute a definite integral using fixed-tolerance Gaussian quadrature.

    Integrate `func` from `a` to `b` using Gaussian quadrature
    with absolute tolerance `tol`.

    Parameters
    ----------
    func : function
        A Python function or method to integrate.
    a : float
        Lower limit of integration.
    b : float
        Upper limit of integration.
    args : tuple, optional
        Extra arguments to pass to function.
    tol, rtol : float, optional
        Iteration stops when error between last two iterates is less than
        `tol` OR the relative change is less than `rtol`.
    maxiter : int, optional
        Maximum order of Gaussian quadrature.
    vec_func : bool, optional
        True or False if func handles arrays as arguments (is
        a "vector" function). Default is True.
    miniter : int, optional
        Minimum order of Gaussian quadrature.

    Returns
    -------
    val : float
        Gaussian quadrature approximation (within tolerance) to integral.
    err : float
        Difference between last two estimates of the integral.

    See Also
    --------
    romberg : adaptive Romberg quadrature
    fixed_quad : fixed-order Gaussian quadrature
    quad : adaptive quadrature using QUADPACK
    dblquad : double integrals
    tplquad : triple integrals
    romb : integrator for sampled data
    simpson : integrator for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrator
    odeint : ODE integrator

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> f = lambda x: x**8
    >>> integrate.quadrature(f, 0.0, 1.0)
    (0.11111111111111106, 4.163336342344337e-17)
    >>> print(1/9.0)  # analytical result
    0.1111111111111111

    >>> integrate.quadrature(np.cos, 0.0, np.pi/2)
    (0.9999999999999536, 3.9611425250996035e-11)
    >>> np.sin(np.pi/2)-np.sin(0)  # analytical result
    1.0

    r\   r@   r)   r   z-maxiter (%d) exceeded. Latest difference = %e)
isinstancetupler]   rC   infmaxrX   r   abswarningswarnr   )r8   rH   rI   rJ   tolrtolmaxiterr\   miniterrN   valerrr>   newvalr)   r)   r*   r      s&   
A
r   c                 C  s   t | }|||< t|S r:   )listrb   )tr[   valuelr)   r)   r*   tupleset   s   rs   c                 C     t | ||||dS )zAn alias of `cumulative_trapezoid`.

    `cumtrapz` is kept for backwards compatibility. For new code, prefer
    `cumulative_trapezoid` instead.
    )r.   r/   r0   initial)r   )r1   r.   r/   r0   ru   r)   r)   r*   r   (     r   c                 C  sT  t | } |du r|}nDt |}|jdkr+t |}dg| j }d||< ||}nt|jt| jkr9tdt j||d}|j| | j| d krPtdt| j}tt	df| |t	dd}tt	df| |t	dd}	t j
|| | | |	   d |d}
|durt |stdt|
j}d||< t jt j|||
jd	|
g|d}
|
S )
a  
    Cumulatively integrate y(x) using the composite trapezoidal rule.

    Parameters
    ----------
    y : array_like
        Values to integrate.
    x : array_like, optional
        The coordinate to integrate along. If None (default), use spacing `dx`
        between consecutive elements in `y`.
    dx : float, optional
        Spacing between elements of `y`. Only used if `x` is None.
    axis : int, optional
        Specifies the axis to cumulate. Default is -1 (last axis).
    initial : scalar, optional
        If given, insert this value at the beginning of the returned result.
        Typically this value should be 0. Default is None, which means no
        value at ``x[0]`` is returned and `res` has one element less than `y`
        along the axis of integration.

    Returns
    -------
    res : ndarray
        The result of cumulative integration of `y` along `axis`.
        If `initial` is None, the shape is such that the axis of integration
        has one less value than `y`. If `initial` is given, the shape is equal
        to that of `y`.

    See Also
    --------
    numpy.cumsum, numpy.cumprod
    quad : adaptive quadrature using QUADPACK
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    fixed_quad : fixed-order Gaussian quadrature
    dblquad : double integrals
    tplquad : triple integrals
    romb : integrators for sampled data
    ode : ODE integrators
    odeint : ODE integrators

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt

    >>> x = np.linspace(-2, 2, num=20)
    >>> y = x
    >>> y_int = integrate.cumulative_trapezoid(y, x, initial=0)
    >>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
    >>> plt.show()

    Nr@   r-   2If given, shape of x must be 1-D or the same as y.rB   7If given, length of x along axis must be the same as y.rA   z'`initial` parameter should be a scalar.rQ   )rC   rS   ndimdiffreshaperT   shaperF   rs   slicecumsumrR   ro   concatenatefullrP   )r1   r.   r/   r0   ru   dr|   ndslice1slice2resr)   r)   r*   r   1  s6   
7



"

r   c              
   C  s  t | j}|d u rd}d}td f| }t||t|||}	t||t|d |d |}
t||t|d |d |}|d u rYtj| |	 d| |
   | |  |d}||d 9 }|S tj||d}t||t|||}t||t|d |d |}t|| }t|| }|| }|| }tj||t	||dkd}|d | |	 d	tjd
|t	||dkd  | |
 |tj||t	||dkd   | | d	|    }tj||d}|S )Nr      r@         @rB         @)outwhereg      @rA   r,   )
rT   r|   r}   rs   rC   rG   rz   float64true_divide
zeros_like)r1   startstopr.   r/   r0   r   step	slice_allslice0r   r   resulthsl0sl1h0h1hsumhprodh0divh1tmpr)   r)   r*   _basic_simpson  sJ   
&
	r   avgc                 C  rt   )zyAn alias of `simpson`.

    `simps` is kept for backwards compatibility. For new code, prefer
    `simpson` instead.
    )r.   r/   r0   even)r   )r1   r.   r/   r0   r   r)   r)   r*   r     rv   r   c                 C  s  t | } t| j}| j| }|}|}d}	|durWt |}t|jdkr>dg| }
|jd |
|< |j}d}	|t|
}nt|jt| jkrLtd|j| |krWtd|d dkrd}d}tdf| }tdf| }|dvrwtd	|d
v rt||d}t||d}|dur|| ||  }|d| | | | |   7 }t	| d|d |||}|dv rt||d}t||d}|dur|t| |t|  }|d| | | | |   7 }|t	| d|d |||7 }|dkr|d }|d }|| }nt	| d|d |||}|	r||}|S )a	  
    Integrate y(x) using samples along the given axis and the composite
    Simpson's rule. If x is None, spacing of dx is assumed.

    If there are an even number of samples, N, then there are an odd
    number of intervals (N-1), but Simpson's rule requires an even number
    of intervals. The parameter 'even' controls how this is handled.

    Parameters
    ----------
    y : array_like
        Array to be integrated.
    x : array_like, optional
        If given, the points at which `y` is sampled.
    dx : float, optional
        Spacing of integration points along axis of `x`. Only used when
        `x` is None. Default is 1.
    axis : int, optional
        Axis along which to integrate. Default is the last axis.
    even : str {'avg', 'first', 'last'}, optional
        'avg' : Average two results:1) use the first N-2 intervals with
                  a trapezoidal rule on the last interval and 2) use the last
                  N-2 intervals with a trapezoidal rule on the first interval.

        'first' : Use Simpson's rule for the first N-2 intervals with
                a trapezoidal rule on the last interval.

        'last' : Use Simpson's rule for the last N-2 intervals with a
               trapezoidal rule on the first interval.

    Returns
    -------
    float
        The estimated integral computed with the composite Simpson's rule.

    See Also
    --------
    quad : adaptive quadrature using QUADPACK
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    fixed_quad : fixed-order Gaussian quadrature
    dblquad : double integrals
    tplquad : triple integrals
    romb : integrators for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrators
    odeint : ODE integrators

    Notes
    -----
    For an odd number of samples that are equally spaced the result is
    exact if the function is a polynomial of order 3 or less. If
    the samples are not equally spaced, then the result is exact only
    if the function is a polynomial of order 2 or less.

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> x = np.arange(0, 10)
    >>> y = np.arange(0, 10)

    >>> integrate.simpson(y, x)
    40.5

    >>> y = np.power(x, 3)
    >>> integrate.simpson(y, x)
    1642.5
    >>> integrate.quad(lambda x: x**3, 0, 9)[0]
    1640.25

    >>> integrate.simpson(y, x, even='first')
    1644.5

    r   Nr@   rw   rx   r   g        )r   lastfirstz3Parameter 'even' must be 'avg', 'last', or 'first'.)r   r   r-         ?   )r   r   r   rA   )
rC   rS   rT   r|   r{   rb   rF   r}   rs   r   )r1   r.   r/   r0   r   r   Nlast_dxfirst_dxreturnshapeshapex	saveshaperl   r   r   r   r)   r)   r*   r     s^   
L





r   c              	   C  s  t | } t| j}| j| }|d }d}d}||k r'|dK }|d7 }||k s||kr/tdi }	tdf| }
t|
|d}t|
|d}|t j|td }| | | |  d | |	d< |
}| } }}td|d D ]\}|dL }t||t|||}|dL }d	|	|d df || | j	|d
   |	|df< td|d D ]$}|	||d f }|||	|d |d f  dd| > d   |	||f< q|d }qj|r=t 
|	d std ngz|d }W n ttfy   d}Y nw z|d }W n ttfy   d}Y nw d||f }d}t|dt| ddd t|d D ]}t|d D ]}t||	||f  dd q t  qtdt|  |	||f S )a  
    Romberg integration using samples of a function.

    Parameters
    ----------
    y : array_like
        A vector of ``2**k + 1`` equally-spaced samples of a function.
    dx : float, optional
        The sample spacing. Default is 1.
    axis : int, optional
        The axis along which to integrate. Default is -1 (last axis).
    show : bool, optional
        When `y` is a single 1-D array, then if this argument is True
        print the table showing Richardson extrapolation from the
        samples. Default is False.

    Returns
    -------
    romb : ndarray
        The integrated result for `axis`.

    See Also
    --------
    quad : adaptive quadrature using QUADPACK
    romberg : adaptive Romberg quadrature
    quadrature : adaptive Gaussian quadrature
    fixed_quad : fixed-order Gaussian quadrature
    dblquad : double integrals
    tplquad : triple integrals
    simpson : integrators for sampled data
    cumulative_trapezoid : cumulative integration for sampled data
    ode : ODE integrators
    odeint : ODE integrators

    Examples
    --------
    >>> from scipy import integrate
    >>> import numpy as np
    >>> x = np.arange(10, 14.25, 0.25)
    >>> y = np.arange(3, 12)

    >>> integrate.romb(y)
    56.0

    >>> y = np.sin(np.power(x, 2.5))
    >>> integrate.romb(y)
    -0.742561336672229

    >>> integrate.romb(y, show=True)
    Richardson Extrapolation Table for Romberg Integration
    ======================================================
    -0.81576
     4.63862  6.45674
    -1.10581 -3.02062 -3.65245
    -2.57379 -3.06311 -3.06595 -3.05664
    -1.34093 -0.92997 -0.78776 -0.75160 -0.74256
    ======================================================
    -0.742561336672229  # may vary

    r@   r   z=Number of samples must be one plus a non-negative power of 2.Nr-   rQ   rA   )r   r   r   rB   r   zE*** Printing table only supported for integrals of a single data set.r?      z%%%d.%dfz6Richardson Extrapolation Table for Romberg Integration=
)sepend r   )rC   rS   rT   r|   rF   r}   rs   floatrX   rG   rR   print	TypeError
IndexError)r1   r/   r0   showr   NsampsNintervr>   kRr   r   slicem1r   slice_Rr   r   r   r[   jprevpreciswidthformstrtitler)   r)   r*   r   A  sf   
=

06


r   c                 C  s   |dkrt d|dkrd| |d | |d   S |d }t|d |d  | }|d d|  }||t|  }tj| |dd}|S )aU  
    Perform part of the trapezoidal rule to integrate a function.
    Assume that we had called difftrap with all lower powers-of-2
    starting with 1. Calling difftrap only returns the summation
    of the new ordinates. It does _not_ multiply by the width
    of the trapezoids. This must be performed by the caller.
        'function' is the function to evaluate (must accept vector arguments).
        'interval' is a sequence with lower and upper limits
                   of integration.
        'numtraps' is the number of trapezoids to use (must be a
                   power-of-2).
    r   z#numtraps must be > 0 in difftrap().r@   r   r   rB   )rF   r   rC   arangerG   )functionintervalnumtrapsnumtosumr   loxpointssr)   r)   r*   	_difftrap  s   r   c                 C  s   d| }|| |  |d  S )z
    Compute the differences for the Romberg quadrature corrections.
    See Forman Acton's "Real Computing Made Real," p 143.
    r   r,   r)   )rI   cr   r   r)   r)   r*   _romberg_diff  s   r   c                 C  s   d }}t dt| dd t d| t d t dd  tt|D ]1}t d	d
| |d |d  d|  f dd t|d D ]}t d|| |  dd q@t d q"t d t d|| | dd t dd
t|d  d d d S )Nr   zRomberg integration ofr   r   from z%6s %9s %9s)StepsStepSizeResultsz%6d %9fr   r@   rA   z%9fzThe final result isafterzfunction evaluations.)r   reprrX   rT   )r   r   resmatr[   r   r)   r)   r*   _printresmat  s   
,
 r   `sbO>
   c	              	   C  sD  t |s
t |rtdt| ||d}	d}
||g}|| }t|	||
}|| }|gg}t j}|d }td|d D ]R}|
d9 }
|t|	||
7 }|| |
 g}t|D ]}|t|| || |d  qT|| }||d  }|rw|| t	|| }||k s||t	| k r n|}q;t
d||f t |rt|	|| |S )a
  
    Romberg integration of a callable function or method.

    Returns the integral of `function` (a function of one variable)
    over the interval (`a`, `b`).

    If `show` is 1, the triangular array of the intermediate results
    will be printed. If `vec_func` is True (default is False), then
    `function` is assumed to support vector arguments.

    Parameters
    ----------
    function : callable
        Function to be integrated.
    a : float
        Lower limit of integration.
    b : float
        Upper limit of integration.

    Returns
    -------
    results : float
        Result of the integration.

    Other Parameters
    ----------------
    args : tuple, optional
        Extra arguments to pass to function. Each element of `args` will
        be passed as a single argument to `func`. Default is to pass no
        extra arguments.
    tol, rtol : float, optional
        The desired absolute and relative tolerances. Defaults are 1.48e-8.
    show : bool, optional
        Whether to print the results. Default is False.
    divmax : int, optional
        Maximum order of extrapolation. Default is 10.
    vec_func : bool, optional
        Whether `func` handles arrays as arguments (i.e., whether it is a
        "vector" function). Default is False.

    See Also
    --------
    fixed_quad : Fixed-order Gaussian quadrature.
    quad : Adaptive quadrature using QUADPACK.
    dblquad : Double integrals.
    tplquad : Triple integrals.
    romb : Integrators for sampled data.
    simpson : Integrators for sampled data.
    cumulative_trapezoid : Cumulative integration for sampled data.
    ode : ODE integrator.
    odeint : ODE integrator.

    References
    ----------
    .. [1] 'Romberg's method' https://en.wikipedia.org/wiki/Romberg%27s_method

    Examples
    --------
    Integrate a gaussian from 0 to 1 and compare to the error function.

    >>> from scipy import integrate
    >>> from scipy.special import erf
    >>> import numpy as np
    >>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)
    >>> result = integrate.romberg(gaussian, 0, 1, show=True)
    Romberg integration of <function vfunc at ...> from [0, 1]

    ::

       Steps  StepSize  Results
           1  1.000000  0.385872
           2  0.500000  0.412631  0.421551
           4  0.250000  0.419184  0.421368  0.421356
           8  0.125000  0.420810  0.421352  0.421350  0.421350
          16  0.062500  0.421215  0.421350  0.421350  0.421350  0.421350
          32  0.031250  0.421317  0.421350  0.421350  0.421350  0.421350  0.421350

    The final result is 0.421350396475 after 33 function evaluations.

    >>> print("%g %g" % (2*result, erf(1)))
    0.842701 0.842701

    z5Romberg integration only available for finite limits.r`   r@   r   r   z,divmax (%d) exceeded. Latest difference = %e)rC   rE   rF   r]   r   rc   rX   appendr   re   rf   rg   r   r   )r   rH   rI   rJ   rh   ri   r   divmaxr\   rN   r>   r   intrangeordsumr   r   rm   last_rowr[   rowr   
lastresultr)   r)   r*   r     s@   U 

r   r      r   )r@      r@   Z   r   )r@   r   r   r@   P   -   )       r   r   r   ii  i   )   K   r_   r_   r   r   ii@/     ))         i  r   r   r   iix  r   iC  )    +    r   r   r   r   i	i  r   i_7  )	     ` )  iDr   r   r   r   ii?# 	   i ^ )
)  }=  8  K    r   r   r   r   r   ii  ip )>  < sB( :ih r   r   r   r   r   iii0	   i 0)I"!  jmi r  r  r  r  r  r  l&	 l    7 iR0P ) @ 7@!!Nd7ipRr  r  r  r
  r	  r  i<ic]    l    `5]v)   v[O    =H/54 +w    "- Mp:    {> $MY( r  r  r  r  r  r  r  l`: l    @	Al   @d@* )i`p`*o   Fg! f    \a LR l   @` r  r  r  r  r  r  r  lx= l   7-)r@   r   r   r   r?      r   r   r   r   r  r   r     c                 C  s  zt | d }|rt|d } ntt| dkrd}W n ty2   | }t|d } d}Y nw |rU|tv rUt| \}}}}}|tj|td | }|t|| fS | d dksa| d |kret	d| t| }	d|	 d }
t|d }|
|ddtj
f  }tj|}tdD ]}d| ||| }qd|ddd d  }|dddddf ||d  }|d dkr|r||d	  }|d }n
||d  }|d }|t|	| | }|d }|t| t| }t|}||| fS )
a  
    Return weights and error coefficient for Newton-Cotes integration.

    Suppose we have (N+1) samples of f at the positions
    x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the
    integral between x_0 and x_N is:

    :math:`\int_{x_0}^{x_N} f(x)dx = \Delta x \sum_{i=0}^{N} a_i f(x_i)
    + B_N (\Delta x)^{N+2} f^{N+1} (\xi)`

    where :math:`\xi \in [x_0,x_N]`
    and :math:`\Delta x = \frac{x_N-x_0}{N}` is the average samples spacing.

    If the samples are equally-spaced and N is even, then the error
    term is :math:`B_N (\Delta x)^{N+3} f^{N+2}(\xi)`.

    Parameters
    ----------
    rn : int
        The integer order for equally-spaced data or the relative positions of
        the samples with the first sample at 0 and the last at N, where N+1 is
        the length of `rn`. N is the order of the Newton-Cotes integration.
    equal : int, optional
        Set to 1 to enforce equally spaced data.

    Returns
    -------
    an : ndarray
        1-D array of weights to apply to the function at the provided sample
        positions.
    B : float
        Error coefficient.

    Notes
    -----
    Normally, the Newton-Cotes rules are used on smaller integration
    regions and a composite rule is used to return the total integral.

    Examples
    --------
    Compute the integral of sin(x) in [0, :math:`\pi`]:

    >>> from scipy.integrate import newton_cotes
    >>> import numpy as np
    >>> def f(x):
    ...     return np.sin(x)
    >>> a = 0
    >>> b = np.pi
    >>> exact = 2
    >>> for N in [2, 4, 6, 8, 10]:
    ...     x = np.linspace(a, b, N + 1)
    ...     an, B = newton_cotes(N, 1)
    ...     dx = (b - a) / N
    ...     quad = dx * np.sum(an * f(x))
    ...     error = abs(quad - exact)
    ...     print('{:2d}  {:10.9f}  {:.5e}'.format(N, quad, error))
    ...
     2   2.094395102   9.43951e-02
     4   1.998570732   1.42927e-03
     6   2.000017814   1.78136e-05
     8   1.999999835   1.64725e-07
    10   2.000000001   1.14677e-09

    r@   rQ   r   r-   z1The sample positions must start at 0 and end at Nr   NrA   r   )rT   rC   r   allrz   	Exception_builtincoeffsarrayr   rF   newaxislinalginvrX   dotmathlogr   exp)rnequalr   nadavinbdbanyitinvecCCinvr[   vecaiBNpowerp1facr)   r)   r*   r     sJ   A$

r   c              
     s  t tdsddlm} |t_ntj}t sd}t|t| }t| }t	||\}}|j
d }	z
 || d  W n tyT }
 zd}t||
d }
~
ww z t||g  }W n% ty }
 zd|
 d}tj|d	d
  fdd}W Y d }
~
nd }
~
ww t|}||krd}t|t|}||krd}t||d u r|j|	}nt||jjsd}t||j|j
d krd}t|t|dd }|j|}|dvrd}t||||||||||f	S )Nqmcr   )statsz`func` must be callable.r   z`func` must evaluate the integrand at points within the integration range; e.g. `func( (a + b) / 2)` must return the integrand at the centroid of the integration volume.zAException encountered when attempting vectorized call to `func`: z. `func` should accept two-dimensional array with shape `(n_points, len(a))` and return an array with the integrand value at each of the `n_points` for better performance.r   
stacklevelc                   s   t j d| dS )Nr-   )r0   arr)rC   apply_along_axisrL   r;   r)   r*   rN   @  rO   z_qmc_quad_iv.<locals>.vfuncz`n_points` must be an integer.z!`n_estimates` must be an integer.z8`qrng` must be an instance of scipy.stats.qmc.QMCEngine.z`qrng` must be initialized with dimensionality equal to the number of variables in `a`, i.e., `qrng.random().shape[-1]` must equal `a.shape[0]`.rng_seed>   FTz*`log` must be boolean (`True` or `False`).)hasattr	_qmc_quadscipyr>  callabler   rC   
atleast_1dcopybroadcast_arraysr|   r   rF   r"  rf   rg   int64r=  Haltonra   	QMCEnginer   rU   _qmccheck_random_state)r8   rH   rI   n_pointsn_estimatesqrngr(  r>  messagedimerN   n_points_intn_estimates_intrC  rngr)   r;   r*   _qmc_quad_iv  sf   




rY  QMCQuadResultintegralstandard_errori   )rP  rQ  rR  r(  rJ   c             	   C  s|  t | ||||||}|\	} }}}}}}}}	t||kr2d}
tj|
dd t|r.tj dS ddS ||k }d|jdd }|| || ||< ||< t|| }|| }t	|}t
|j|}t|D ]8}||}|	j|||}| |}|rt|t| }nt|| }|||< t|d
d|| i|j}qet|}|r|dk r|tjd  n|| }|	|}t||S )a  
    Compute an integral in N-dimensions using Quasi-Monte Carlo quadrature.

    Parameters
    ----------
    func : callable
        The integrand. Must accept a single arguments `x`, an array which
        specifies the point at which to evaluate the integrand. For efficiency,
        the function should be vectorized to compute the integrand for each
        element an array of shape ``(n_points, n)``, where ``n`` is number of
        variables.
    a, b : array-like
        One-dimensional arrays specifying the lower and upper integration
        limits, respectively, of each of the ``n`` variables.
    n_points, n_estimates : int, optional
        One QMC sample of `n_points` (default: 256) points will be generated
        by `qrng`, and `n_estimates` (default: 8) statistically independent
        estimates of the integral will be produced. The total number of points
        at which the integrand `func` will be evaluated is
        ``n_points * n_estimates``. See Notes for details.
    qrng : `~scipy.stats.qmc.QMCEngine`, optional
        An instance of the QMCEngine from which to sample QMC points.
        The QMCEngine must be initialized to a number of dimensions
        corresponding with the number of variables ``x0, ..., xn`` passed to
        `func`.
        The provided QMCEngine is used to produce the first integral estimate.
        If `n_estimates` is greater than one, additional QMCEngines are
        spawned from the first (with scrambling enabled, if it is an option.)
        If a QMCEngine is not provided, the default `scipy.stats.qmc.Halton`
        will be initialized with the number of dimensions determine from
        `a`.
    log : boolean, default: False
        When set to True, `func` returns the log of the integrand, and
        the result object contains the log of the integral.

    Returns
    -------
    result : object
        A result object with attributes:

        integral : float
            The estimate of the integral.
        standard_error :
            The error estimate. See Notes for interpretation.

    Notes
    -----
    Values of the integrand at each of the `n_points` points of a QMC sample
    are used to produce an estimate of the integral. This estimate is drawn
    from a population of possible estimates of the integral, the value of
    which we obtain depends on the particular points at which the integral
    was evaluated. We perform this process `n_estimates` times, each time
    evaluating the integrand at different scrambled QMC points, effectively
    drawing i.i.d. random samples from the population of integral estimates.
    The sample mean :math:`m` of these integral estimates is an
    unbiased estimator of the true value of the integral, and the standard
    error of the mean :math:`s` of these estimates may be used to generate
    confidence intervals using the t distribution with ``n_estimates - 1``
    degrees of freedom. Perhaps counter-intuitively, increasing `n_points`
    while keeping the total number of function evaluation points
    ``n_points * n_estimates`` fixed tends to reduce the actual error, whereas
    increasing `n_estimates` tends to decrease the error estimate.

    Examples
    --------
    QMC quadrature is particularly useful for computing integrals in higher
    dimensions. An example integrand is the probability density function
    of a multivariate normal distribution.

    >>> import numpy as np
    >>> from scipy import stats
    >>> dim = 8
    >>> mean = np.zeros(dim)
    >>> cov = np.eye(dim)
    >>> def func(x):
    ...     return stats.multivariate_normal.pdf(x, mean, cov)

    To compute the integral over the unit hypercube:

    >>> from scipy.integrate import qmc_quad
    >>> a = np.zeros(dim)
    >>> b = np.ones(dim)
    >>> rng = np.random.default_rng()
    >>> qrng = stats.qmc.Halton(d=dim, seed=rng)
    >>> n_estimates = 8
    >>> res = qmc_quad(func, a, b, n_estimates=n_estimates, qrng=qrng)
    >>> res.integral, res.standard_error
    (0.00018441088533413305, 1.1255608140911588e-07)

    A two-sided, 99% confidence interval for the integral may be estimated
    as:

    >>> t = stats.t(df=n_estimates-1, loc=res.integral,
    ...             scale=res.standard_error)
    >>> t.interval(0.99)
    (0.00018401699720722663, 0.00018480477346103947)

    Indeed, the value reported by `scipy.stats.multivariate_normal` is
    within this range.

    >>> stats.multivariate_normal.cdf(b, mean, cov, lower_limit=a)
    0.00018430867675187443

    z^A lower limit was equal to an upper limit, so the value of the integral is zero by definition.r   r?  r   r-   rB   seedy              ?Nr)   )rY  rC   anyrf   rg   rZ  rc   rG   prodzerosr   rX  rX   randomr=  scaler   r(  rV   
_init_quadmeanpisem)r8   rH   rI   rP  rQ  rR  r(  rJ   rX  r>  rS  i_swapsignAdA	estimatesrngsr[   sampler.   
integrandsestimater[  r\  r)   r)   r*   rE  f  s4   j


"

rE  )Nr,   r-   )r8   r   r9   r5   )r)   r?   )r)   F)r)   r^   r^   r_   Tr@   )Nr,   r-   N)Nr,   r-   r   )r,   r-   F)r)   r   r   Fr   F)r   )8
__future__r   typingr   r   r   r   r   r   r$   numpyrC   r'  r   rf   collectionsr	   r
   r   scipy.specialr   r   r   scipy._lib._utilr   __all__r+   __doc__replaceWarningr   r4   r5   r<   r=   dictr6   r   r]   r   rs   r   r   r   r   r   r   r   r   r   r   r!  r   rY  rZ  rE  r)   r)   r)   r*   <module>   s     	
	



G-
U

	]
'
	 
 	
 







#mJ