o
    gm                     @   s$  d dl Z d dlZd dlmZmZmZmZmZm	Z	 d dl
mZ d dlmZmZmZmZmZmZmZ d dlmZmZmZmZ d dlmZmZmZmZmZmZm Z m!Z!m"Z" G dd dZ#G d	d
 d
Z$G dd dZ%G dd dZ&G dd dZ'G dd dZ(G dd dZ)dddZ*G dd de+Z,dS )    N)assert_equalassert_almost_equalassert_array_equalassert_array_almost_equalassert_allclosesuppress_warnings)raises)arraydifflinspacemeshgridonespishape)bisplrepbisplevsplrepspalde)	UnivariateSplineLSQUnivariateSplineInterpolatedUnivariateSplineLSQBivariateSplineSmoothBivariateSplineRectBivariateSplineLSQSphereBivariateSplineSmoothSphereBivariateSplineRectSphereBivariateSplinec                   @   s   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd Zdd Z	dd Z
dd Zdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ Zd%d& Zd'd( Zd)d* Zd+d, Zd-S ).TestUnivariateSplinec                 C   sj   g d}g d}t ||dd}t| ddg t| ddg t| d t|g dg d d S )N         )r!   r!   r!   r   kr!           r         ?r    r   r   	get_knots
get_coeffsr   get_residualselfxylut r0   c/home/ubuntu/cloudmapper/venv/lib/python3.10/site-packages/scipy/interpolate/tests/test_fitpack2.pytest_linear_constant      z)TestUnivariateSpline.test_linear_constantc                 C   s   g d}g d}t ||dd}d}tt|t|| tt|t||dd g d}tt|t|| tt|t||dd d S )Nr   r   r       r   r"   r    )nu)r&   r          @)r   r   r   )r,   r-   r.   r/   argr0   r0   r1   test_preserve_shape   s   z(TestUnivariateSpline.test_preserve_shapec                 C   sj   g d}g d}t ||dd}t| ddg t| ddg t| d t|g d	g d
 d S )Nr   r4   r   r"   r!   r   r5   r$   r%   )r   r   r    r'   r+   r0   r0   r1   test_linear_1d&   r3   z#TestUnivariateSpline.test_linear_1dc                 C   s@   G dd dt }|g dg ddd}t|ddgd	d	g d S )
Nc                   @   s   e Zd Zdd ZdS )z9TestUnivariateSpline.test_subclassing.<locals>.ZeroSplinec                 S   s   dt | S )Nr   )r	   )r,   r-   r0   r0   r1   __call__3   s   zBTestUnivariateSpline.test_subclassing.<locals>.ZeroSpline.__call__N)__name__
__module____qualname__r;   r0   r0   r0   r1   
ZeroSpline2   s    r?   r   r    r!   r5      )r!   r    r!   r    r!   r    r"   r&   r7   r$   )r   r   )r,   r?   spr0   r0   r1   test_subclassing/   s   z%TestUnivariateSpline.test_subclassingc                 C   s4   g d}g d}t ||dd}t|g tg  d S )Nr   r!   rA      	   r   r5   rF         r!   r"   )r   r   r	   r,   r-   r.   splr0   r0   r1   test_empty_input9   s   z%TestUnivariateSpline.test_empty_inputc                 C   s4   g d}g d}t ||dd}t| d d d S )NrD   rG   r!   r"   r   g7ã?)r   r   rootsrJ   r0   r0   r1   
test_roots@   s   zTestUnivariateSpline.test_rootsc                 C   s6   g d}g d}t ||dd}t|dg d d S )NrD   rG   r!   r"         @)g;@gpZ<o?gOmǿg      ?)r   r   derivativesrJ   r0   r0   r1   test_derivativesF   s   
z%TestUnivariateSpline.test_derivativesc                 C   sp   t d}|d d|d   }t||dd}td|}t|g ddd	 t||ddd
}t|d|dd	 d S )N   r!          @r    r   s)g     F@g     C@g      6@      @V瞯<atol)rU   r#   )nparanger   r   r   r   rP   )r,   r-   r.   tckdersrK   r0   r0   r1   test_derivatives_2M   s   




z'TestUnivariateSpline.test_derivatives_2c                 C   sN   g d}g d}g d}t |||dd}tg d}t|g d|dd	 dS )
zRegression test for #1375.)      g<&g_g@7ѿg46	<ƿgBϠr$   gBϠ?g46	<?g@7?g_?g<&?      ?)r`   1\_#?~a?w?5??0ms?gx?re   rd   rc   rb   ra   r`   )   mBo!@u)	~@e?֭z@b@v5|@geSs@rk   rj   ri   rh   rg   rf   N)r-   r.   wrU   )gJdv?gc?g=?gt?皙?      ??gGz?gMb@?rX   )r   r	   r   )r,   r-   r.   rl   rK   desiredr0   r0   r1   test_resize_regression]   s   z+TestUnivariateSpline.test_resize_regressionc           
   	   C   sP  t jdtd}|d }tddd}| }d|t |dk |d	k< | }|d |||d k < |d
 |||d
 k< ttfD ]}|||d}dD ]}t|||d|d dd t||||d||d dd qGdD ]}t|||d|d dd t||||d||d dd qidD ]}t	t
||fi t|d qdD ]}t|||d|d dd t||||d||d dd qq=| dd }	t|||	}t||dd|d dd t||dd|d dd t	t
||fi tdd t||dd|d dd dD ]#}t||}t	t
||fi t|d t	t
tfi t|||d qd S )NrA   dtyper!      d   r   r$         @r-   r.   )r   extrapolate)extgؗҜ<rX   )r   zeros)r    raise)r!   constr5   r   r    )ry   unknown)r-   r.   r|   )rZ   r[   floatr   copy
logical_orr   r   r   assert_raises
ValueErrordictr(   r   )
r,   r-   r.   xpxp_zerosxp_clipclsrK   r|   tr0   r0   r1   test_out_of_range_regressionm   sF   """


z1TestUnivariateSpline.test_out_of_range_regressionc                 C   sF   t dd }t dd }t ddd}d}ttt||||d d S )Nrw   r`   r   c   
   )ry   e   bbox)rZ   r[   r   r   r   r   )r,   xsysknotsr   r0   r0   r1   test_lsq_fpchec   s   
z$TestUnivariateSpline.test_lsq_fpchecc                 C   sx   t dddd }t |}t||dd}|dd}t|d|d |d}t|d|d	 |d	d d S )
Nr   r   F   r!   rT   r    333333?g333333?皙?)rZ   r   cosr   antiderivative
derivativer   integral)r,   r-   r.   rK   spl2r0   r0   r1   "test_derivative_and_antiderivative   s   


z7TestUnivariateSpline.test_derivative_and_antiderivativec                 C   sB   g d}g d}t ||ddd}g d}t| |ddd	 d S )
Nr   r    r5      g      !@)ro   皙??r7   rA   r   r!   )r|   r#   )ry   r   g      rF   g      #@r   r   rW   rX   )r   r   r   )r,   x_valuesy_valuesfr-   r0   r0   r1   test_derivative_extrapolation   s
   z2TestUnivariateSpline.test_derivative_extrapolationc                 C   sT   t ddd}tdD ]}t||d|d}dD ]\}}t|||ddd	 qqd S )
Nr$   r`   rE   r5   r   )rU   r|   ))r   r   )r   rA   )r    rA   r   r   )r   )r   ry   rW   rX   )rZ   r   ranger   r   r   )r,   r-   r|   r   abr0   r0   r1   test_integral_out_of_bounds   s   z0TestUnivariateSpline.test_integral_out_of_boundsc                 C   s,  t jdtd}|d }t |}t||dd}| dd }|d }t jt jt j fD ]g}||d< tt	tfi t
||dd tt	tfi t
||dd tt	tfi t
|||dd	 ||d< ||d< tt	tfi t
|||dd
 tt	tfi t
|||dd
 tt	tfi t
||||dd q,d S )Nr   rs   r!   Tcheck_finiter5   ry   r-   r.   r   )r-   r.   r   r   )r-   r.   rl   r   r-   r.   r   rl   r   )rZ   r[   r   	ones_liker   r(   naninfr   r   r   r   r   )r,   r-   r.   rl   rK   r   y_endzr0   r0   r1   test_nan   s:   






zTestUnivariateSpline.test_nanc              	   C   s   t jdtd}|d }t jdtd}|d |d< |d }t |}t||dd}| dd }t|||ddd	 t||||dd
 tttfi t	||ddd ttt
fi t	||dd d S )Nr   rs   r!   r   r   Tr   r5   )r-   r.   rl   rU   r   r   )r-   r.   rU   r   r   )rZ   r[   r   r   r   r(   r   r   r   r   r   r,   xxyyr-   r.   rl   rK   r   r0   r0   r1   test_strictly_increasing_x   s    



z/TestUnivariateSpline.test_strictly_increasing_xc              
   C   s   t jdtd}|d }t jdtd}|d d |d< |d }t |}t||dd}| dd	 }tttfi t||dd
 ttt	fi t||dd
 ttt
fi t||||dd d S )Nr   rs   r!   r   r`   r   Tr   r5   r   r   )rZ   r[   r   r   r   r(   r   r   r   r   r   r   r0   r0   r1   test_increasing_x   s"   




z&TestUnivariateSpline.test_increasing_xc                 C   s  t t}g d}g d}t|| W d    n1 sw   Y  dt|jv s*J t t}g d}g d}g d}t|||d W d    n1 sLw   Y  dt|jv sZJ t t}d}t|||d	 W d    n1 srw   Y  d
t|jv sJ t t}t||dd W d    n1 sw   Y  dt|jv sJ t t}t||dd W d    n1 sw   Y  dt|jv sJ d S )Nr   ro   r   r   r7   !x and y should have a same lengthro   r   r   r7   gffffff@r_   r`   r`   r`   rl   %x, y, and w should have a same lengthry   r   bbox shape should be (2,)r   r"   k should be 1 <= k <= 5r_   rT   s should be s >= 0.0)r   r   r   strvaluer,   infor   r   w_valuesr   r0   r0   r1   (test_invalid_input_for_univariate_spline   s4   




z=TestUnivariateSpline.test_invalid_input_for_univariate_splinec                 C   sL  t t}g d}g d}t|| W d    n1 sw   Y  dt|jv s*J t t}g d}g d}g d}t|||d W d    n1 sLw   Y  dt|jv sZJ t t}d}t|||d	 W d    n1 srw   Y  d
t|jv sJ t t}t||dd W d    n1 sw   Y  dt|jv sJ d S )Nr   r   r   r   r   r   r   ry   r   r   r   r"   r   )r   r   r   r   r   r   r0   r0   r1   5test_invalid_input_for_interpolated_univariate_spline  s,   



zJTestUnivariateSpline.test_invalid_input_for_interpolated_univariate_splinec                 C   s  g d}g d}t ||dd}| dd }tt}g d}g d}t||| W d    n1 s4w   Y  dt|jv sBJ tt}g d}g d}g d	}t||||d
 W d    n1 sew   Y  dt|jv ssJ tt}d}t||||d W d    n1 sw   Y  dt|jv sJ tt}d}t||||d W d    n1 sw   Y  dt|jv sJ tt}t|||dd W d    n1 sw   Y  dt|jv sJ d S )Nr   r   Tr   r!   r5   r   r   )r`   r`   r`   r`   r   r   )rw   r   z;Interior knots t must satisfy Schoenberg-Whitney conditionsry   r   r   r"   r   )r   r(   r   r   r   r   r   )r,   r   r   rK   t_valuesr   r   r   r0   r0   r1   ,test_invalid_input_for_lsq_univariate_spline4  s>   




zATestUnivariateSpline.test_invalid_input_for_lsq_univariate_splinec                 C   s   t g d}t g d}t g d}t ddg}t||||d}t| | | | d}t|g d|g d d S )Nr   r   )r`   r`   r`   r`   r`   r   rw   )r-   r.   rl   r   rm   )rZ   r	   r   tolistr   )r,   r   r   r   r   spl1r   r0   r0   r1   test_array_like_inputV  s   
z*TestUnivariateSpline.test_array_like_inputc                 C   sd   t d}g d}t }|td}t||dd tt|d W d    d S 1 s+w   Y  d S )Nm   )mr$   r$   r$   r$   r$   %@r$         &@r$   r$   r$   r   r$   r$   r$   r$   r$   r$   r   r$   r$   r$   r   r$   r$   r$   r   r$   r$   r$         %@r$   r$   r$   ffffff%@r$   r$   r$   r   r$   r$   r$   r$   r$   r$   r   r$   r$   r   r$   r$   r$   333333%@r$   r$   r$   r   r$   r$   r   r$   r$   r   r$   r$   g      '@r$   r$   r$   r   r$   r$   r   r$   r$   r   r$   r$   皙%@r$   r$   r$   r   r$   r$   r   r$   r$   r$   $@r$   r$   r   r$   r$   r   r$   r$   r$   r   r$   r$   r$   r   r$   r$   r$   r   r$   a#  
The maximal number of iterations maxit \(set to 20 by the program\)
allowed for finding a smoothing spline with fp=s has been reached: s
too small.
There is an approximation returned but the corresponding weighted sum
of squared residuals does not satisfy the condition abs\(fp-s\)/s < tol.r   r"   )r   r   recordUserWarningr   r   len)r,   r-   r.   suprr0   r0   r1   test_fpknot_oob_crashe  s   "z*TestUnivariateSpline.test_fpknot_oob_crashN)r<   r=   r>   r2   r9   r:   rC   rL   rN   rQ   r^   rr   r   r   r   r   r   r   r   r   r   r   r   r   r   r0   r0   r0   r1   r      s.    		
)

"r   c                   @   sD   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd Zdd Z	dS )TestLSQBivariateSplinec           
   
   C   s   g d}g d}g d}d}d| d| g}d| d| g}t   }|td}t|||||ddd}	tt|d W d    n1 sDw   Y  t|	d	d	d
 d S )N	r   r   r   r    r    r    r!   r!   r!   	r   r    r!   r   r    r!   r   r    r!   	r!   r!   r!   r!   r!   r!   r!   r!   r!   rn   r   r!   
The coefficients of the splinekxkyr          @)r   r   r   r   r   r   r   
r,   r-   r.   r   rU   txtyr   r   r/   r0   r0   r1   r2     s   z+TestLSQBivariateSpline.test_linear_constantc              
   C   s  g d}g d}g d}d}d| d| g}d| d| g}t  }|td t|||||ddd}W d    n1 s=w   Y  | \}}t|d d	 |dd  D ]i\}	}
t|d d	 |dd  D ]W\}}d
D ]P}dD ]K}|	d|  |
|  }|d|  ||  }||	|
 d|  d|  ||
|| d|   ||	|d|  |  ||
|| |  }t|||| qpqlqfqUd S )Nr   r   	r   rE   rR   r!   r5   rE   r   r!   r5   rn   r   r!   r   r   ry   )rn   ro   rp   )r   皙?gffffff?)r   filterr   r   r(   zipr   )r,   r-   r.   r   rU   r   r   r   r/   xaxbyaybr   r   ypzpr0   r0   r1   test_bilinearity  s:   ""z'TestLSQBivariateSpline.test_bilinearityc              
   C   sV  g d}g d}t g d}d}d| d| g}d| d| g}t  }|td}t|||||ddd}	tt|d W d    n1 sFw   Y  |	 \}}|	||}
d	t|d d d f t|d d d f  |
d d
d d
f |
dd d d
f  |
d d
dd f  |
dd dd f   	  }t
|	|d |d
 |d |d
 | d S )N)	r   r   r   r    r    r    rR   rR   rR   r   r   rn   r   r!   r   r         ?ry   r   )r	   r   r   r   r   r   r   r(   r
   sumr   r   )r,   r-   r.   r   rU   r   r   r   r   r/   tztrpzr0   r0   r1   test_integral  s*   
(N z$TestLSQBivariateSpline.test_integralc           
   
   C   s   g d}g d}g d}d}d| d| g}d| d| g}t   }|td}t|||||ddd}	tt|d W d    n1 sDw   Y  t|	g g td	 t|	g g d
dtd d S )Nr   r   r   rn   r   r!   r   r   r   Fgridr   )	r   r   r   r   r   r   r   rZ   r}   r   r0   r0   r1   rL     s   z'TestLSQBivariateSpline.test_empty_inputc              
   C   s  d}d| d| g}d| d| g}t t$}tdd}tdd}tjdddd}t||||| W d    n1 s=w   Y  dt|jv sKJ t t,}tdd}tdd}tdd}tjddd	d}t||||||d
 W d    n1 s~w   Y  dt|jv sJ t t}tdd}t||||||d
 W d    n1 sw   Y  dt|jv sJ t t}d}	t||||||	d W d    n1 sw   Y  dt|jv sJ t t}t|||||ddd W d    n1 sw   Y  dt|jv sJ t t}
t|||||dd W d    n	1 s%w   Y  dt|
jv s4J t t}
t|||||dd W d    n	1 sNw   Y  dt|
jv s]J d S )Nrn   r   r!   r`         $@r   num%x, y, and z should have a same length   r   (x, y, z, and w should have a same lengthr_   w should be positiver   rw   r   r   bbox shape should be (4,)r   ;The length of x, y and z should be at least (kx+1) * (ky+1)r$   epseps should be between (0, 1))r   r   rZ   r   r   r   r   )r,   rU   r   r   r   r-   r.   r   rl   r   exc_infor0   r0   r1   test_invalid_input  sT   







z)TestLSQBivariateSpline.test_invalid_inputc              
   C   s  d}t d| d| g}t d| d| g}t dd}t dd}t dd}t dd}t g d}t C}	|	td}
t|||||||d}t| | | | | | |d}t|d	d	|d	d	 t	t
|
d
 W d    d S 1 sw   Y  d S )Nrn   r   r!   r`   r   )r`   r   r`   r   r   )rl   r   rS   r    )rZ   r	   r   r   r   r   r   r   r   r   r   )r,   rU   r   r   r-   r.   r   rl   r   r   r   r   r   r0   r0   r1   r     s$   "z,TestLSQBivariateSpline.test_array_like_inputc           	      C   s   t jddddf \}}| }| }dt | }t ddd}t ddd}t }|td}t|||||}t	t
|d	 W d
   n1 sMw   Y  t|||dd| d
S )zkTest for the case when the input knot-location arrays in x and y are
        of different lengths.
        r   rw   r   rn   g     X@   !   r   r   NFr   )rZ   mgridravelr   r   r   r   r   r   r   r   r   )	r,   r-   r.   r   r   r   r   r   r/   r0   r0   r1   test_unequal_length_of_knots  s   z3TestLSQBivariateSpline.test_unequal_length_of_knotsN)
r<   r=   r>   r2   r   r   rL   r  r   r  r0   r0   r0   r1   r     s    +r   c                   @   s<   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd ZdS )TestSmoothBivariateSplinec                 C   s   g d}g d}g d}t |||ddd}t| g dg df t| g d t| d t|g d	dd
gddgddgddgg d S )Nr   r   r   r   r   r   r   r!   r!   )r!   r!   r!   r!   r$   r%   r&   r!   r   r   r(   r)   r   r*   r,   r-   r.   r   r/   r0   r0   r1   r2   !     .z.TestSmoothBivariateSpline.test_linear_constantc                 C   s   g d}g d}g d}t |||ddd}t| g dg df t| g d t| d t|g d	dd
gddgddgddgg d S )Nr   r   )	r   r   r   r    r    r    r5   r5   r5   r   r   r  )r   r   r5   r5   r$   r%   r&   r   r    r  r  r0   r0   r1   r:   +  r  z(TestSmoothBivariateSpline.test_linear_1dc              	   C   s4  g d}g d}t g d}t }|td t|||dddd}W d    n1 s,w   Y  g d}g d	}|||}d
t|d d d f t|d d d f  |d dd df |dd d df  |d ddd f  |dd dd f     }	t||d |d |d |d |	 t|||dddd}
t|
|d |d |d |d |	dd ||d d |d d }d
t|d d d d d f t|d d d d d f  |d dd df |dd d df  |d ddd f  |dd dd f     }	t||d |d |d |d |	 d S )N)	r   r   r   r    r    r    r5   r5   r5   r   r   z
The required storage spacer   r   )r   r   rU   )r   r    r5   r   r   ry   r    )decimalr   )	r	   r   r   r   r   r
   r   r   r   )r,   r-   r.   r   r   r/   r   r   r   r   lut2r0   r0   r1   r   5  s6   
(N&"8N*z'TestSmoothBivariateSpline.test_integralc           
      C   s|   t ddd}t ddd}|| }t ddd}t ddd}t|||}t|||}t|||}|||}	t||	 d S )Nr   r    P   ry   r   rw   )rZ   r   r   r   r   r   )
r,   r-   r.   r   xiyir\   res1interp_res2r0   r0   r1   test_rerun_lwrk2_too_smallP  s   
z4TestSmoothBivariateSpline.test_rerun_lwrk2_too_smallc                 C   s  t t"}tdd}tdd}tjdddd}t||| W d    n1 s)w   Y  dt|jv s7J t t*}tdd}tdd}tdd}tjdddd}t||||d W d    n1 shw   Y  dt|jv svJ t t}td	d}t||||d W d    n1 sw   Y  d
t|jv sJ t t}d}t||||d W d    n1 sw   Y  dt|jv sJ t t}t|||ddd W d    n1 sw   Y  dt|jv sJ t t}t|||d	d W d    n	1 sw   Y  dt|jv sJ t t}t|||dd W d    n	1 s-w   Y  dt|jv s<J t t}t|||dd W d    n	1 sTw   Y  dt|jv scJ d S )Nr`   r   r   r   r  r  r   r  r_   r  r  r   r  r   r  rT   r   r$   r	  r  )r   r   rZ   r   r   r   r   )r,   r   r-   r.   r   rl   r   r  r0   r0   r1   r  _  sV   







z,TestSmoothBivariateSpline.test_invalid_inputc              	   C   s   t g d}t g d}t g d}t g d}t g d}t|||||ddd}t| | | | | ddd}t|d	d
|d	d
 d S )Nr   r   r   )	r   r   r   r   r   r   r   r   r   )r`   r   r`   r   r   )rl   r   r   r   )r   rl   r   r   rn   ro   )rZ   r	   r   r   r   )r,   r-   r.   r   rl   r   r   r   r0   r0   r1   r     s   z/TestSmoothBivariateSpline.test_array_like_inputN)	r<   r=   r>   r2   r:   r   r   r  r   r0   r0   r0   r1   r     s    

,r  c                   @   4   e Zd Zdd Zdd Zdd Zdd Zd	d
 ZdS )TestLSQSphereBivariateSplinec                 C   s   d\}}t d|d  dd|d   |t }t d|d  dd|d   |d t }t|jd |jd f}|d d d }|d d d }|d d dd d df }t||\}	}
t|	 |
 |j ||}|| _|| _	||| _
| _d S )Nr   Z   ro   r   rS   r   rA   )r   r   r   r   r   r   r  Tlut_lsqdatanew_lonsnew_lats)r,   nthetanphithetaphir'  knotstknotspknotdatalatslonsr&  r0   r0   r1   setup_method  s   $(z)TestLSQSphereBivariateSpline.setup_methodc                 C   s,   t | j d t| | j| j| j d S )Nr$   )r   r&  r*   r   r)  r(  r'  r,   r0   r0   r1   r2     s   z1TestLSQSphereBivariateSpline.test_linear_constantc                 C   8   t | g g td t | jg g ddtd d S Nr   Fr   r   )r   r&  rZ   r}   r4  r0   r0   r1   rL         z-TestLSQSphereBivariateSpline.test_empty_inputc              	   C   sn  d\}}t d|d  dd|d   |t }t d|d  dd|d   |d t }t|jd |jd f}|d d d }|d d d }tt'}t dd|d	t }	t|	|\}
}t|
 | |j	 || W d    n1 srw   Y  d
t
|jv sJ tt'}t dd|d	t }	t|	|\}
}t|
 | |j	 || W d    n1 sw   Y  d
t
|jv sJ tt)}t dd|d	d t }t||\}}t| | |j	 || W d    n1 sw   Y  dt
|jv sJ tt)}t dd|d	d t }t||\}}t| | |j	 || W d    n	1 s+w   Y  dt
|jv s:J t||\}}tt }t|}d|d< t| | |j	 || W d    n	1 siw   Y  dt
|jv sxJ tt }t|}t|d< t| | |j	 || W d    n	1 sw   Y  dt
|jv sJ tt }t|}d|d< t| | |j	 || W d    n	1 sw   Y  dt
|jv sJ tt"}t|}dt |d< t| | |j	 || W d    n	1 sw   Y  dt
|jv sJ tt}tg d}t| | |j	 |||d W d    n	1 sFw   Y  dt
|jv sUJ tt}t| | |j	 ||dd W d    n	1 svw   Y  dt
|jv sJ tt}t| | |j	 ||dd W d    n	1 sw   Y  dt
|jv sJ d S )Nr#  ro   r   rS   r   rA   皙r`   r   theta should be between [0, pi]rn   皙?phi should be between [0, 2pi]r$   ztt should be between (0, pi)ztp should be between (0, 2pi)r    	r_   r`   r&   ro   r`   r&   ro   r`   r`   r   r  r	  r  )r   r   r   r   r   r   r   r   r  r%  r   r   rZ   r   r	   )r,   r*  r+  r,  r-  r'  r.  r/  r  invalid_thetainvalid_latsr2  invalid_phir1  invalid_lonsinvalid_knotstinvalid_knotsp	invalid_wr0   r0   r1   r    s   (














z/TestLSQSphereBivariateSpline.test_invalid_inputc                 C   s  d\}}t d|d  dd|d   |t }t d|d  dd|d   |d t }t||\}}t|jd |jd f}|d d d }|d d d }	t| jd }
t| | |j ||	|
d}t|  |  |j  | |	 |
 d}t	|dd|dd d S )	Nr#  ro   r   rS   r   rA   r   r`   )
r   r   r   r   r   r  r   r%  r   r   )r,   r*  r+  r,  r-  r1  r2  r'  r.  r/  rl   r   r   r0   r0   r1   r   
  s8   
z2TestLSQSphereBivariateSpline.test_array_like_inputNr<   r=   r>   r3  r2   rL   r  r   r0   r0   r0   r1   r"    s    Tr"  c                   @   r!  )TestSmoothSphereBivariateSplinec                 C   s   t dt dt dt dt dt dt dt dt dt g	}t dt tdt dt tdt dt tdt g	}t g d}t|||dd| _d S )Nr   ro         ?r&   r       _BrT   )r	   r   r   r/   )r,   r,  r-  r   r0   r0   r1   r3  $  s   ,&z,TestSmoothSphereBivariateSpline.setup_methodc                 C   s@   t | j d t| g dddgddgddgddgg d S )Nr$   r%   r   r&   r!   )r   r/   r*   r   r4  r0   r0   r1   r2   ,  s   z4TestSmoothSphereBivariateSpline.test_linear_constantc                 C   r5  r6  )r   r/   rZ   r}   r4  r0   r0   r1   rL   1  r7  z0TestSmoothSphereBivariateSpline.test_empty_inputc                 C   s  t dt dt dt dt dt dt dt dt dt g	}t dt tdt dt tdt dt tdt g	}t g d}tt/}t dt dt dt dt dt dt dt dt dt g	}t|||dd W d    n1 stw   Y  d	t|jv sJ tt/}t dt dt dt dt dt dt dt dt d
t g	}t|||dd W d    n1 sw   Y  d	t|jv sJ tt)}t dt tdt dt tdt dt tdt g	}t|||dd W d    n1 sw   Y  dt|jv sJ tt)}t dt tdt dt tdt dt tdt g	}t|||dd W d    n	1 s6w   Y  dt|jv sEJ tt}t g d}t||||dd W d    n	1 sdw   Y  dt|jv ssJ tt}t|||dd W d    n	1 sw   Y  dt|jv sJ tt}t|||dd W d    n	1 sw   Y  dt|jv sJ tt}t|||dd W d    n	1 sw   Y  dt|jv sJ d S )Nr   ro   rF  r&   r   r8  rG  rT   r9  r:  r;  r`   g @r<  rl   rU   r  r_   s should be positiver	  r  )r	   r   r   r   r   r   r   )r,   r,  r-  r   r  r=  r?  rC  r0   r0   r1   r  5  sl   &&







z2TestSmoothSphereBivariateSpline.test_invalid_inputc                 C   s   t dt dt dt dt dt dt dt dt dt g	}t dt tdt dt tdt dt tdt g	}t g d}t g d}t||||dd}t| | | | dd}t|d	d	|d	d	 d S )
Nr   ro   rF  r&   r   )	r`   r`   r`   r`   r`   r`   r`   r`   r`   rG  rH  r`   )rZ   r	   r   r   r   r   )r,   r,  r-  r   rl   r   r   r0   r0   r1   r   g  s   "&z5TestSmoothSphereBivariateSpline.test_array_like_inputNrD  r0   r0   r0   r1   rE  #  s    2rE  c                   @   sd   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd Zdd Z	dd Z
dd Zdd Zdd ZdS )TestRectBivariateSplinec                 C   s^   t g d}t g d}t g dg dg dg dg dg}t|||}t|||| d S )Nr@   r   r    r   r    r   r   r    r!   r    r   r   r    r    r    r   r	   r   r   r  r0   r0   r1   test_defaultsy  s
   &z%TestRectBivariateSpline.test_defaultsc                    s   t g d}t g d}t g dg dg dg dg dg}t||| g d}g d} ||}t  fddt||D }t|| d S )	Nr@   rK  rL  rM  )r   ffffff@g333333@ro   ffffff
@333333?r!   )r   rQ  rR  rx   g      @r`   r!   c                       g | ]\}} ||d  qS r   r0   .0r   r   r/   r0   r1   
<listcomp>      z9TestRectBivariateSpline.test_evaluate.<locals>.<listcomp>)r	   r   evr   r   )r,   r-   r.   r   r  r  zizi2r0   rW  r1   test_evaluate  s   &z%TestRectBivariateSpline.test_evaluatec                 C   s  t g d}t g d}t g dg dg dg dg dg}t g dg dg dg dg dgd	 }t g d
g d
g dg dg d
g}t g dg dg dg dg dgd	 }t|||}t|||dd| t|||dd| t|||ddd| d S )Nr@   rK  rL  rM  r   r   ir   r   r   r   rv   r   r   r   r   r5   r   r   r   r   ir   r   rV   r5   ry   r   r   r   r&   r   g      r   r    r   r         пr   (   ir      iig     @0@r   g     @0   ru   rA   r   rR      g     +r   g     +@ir   dxdy)rq  rs  rN  r,   r-   r.   r   rq  rs  dxdyr/   r0   r0   r1   test_derivatives_grid  s(   &z-TestRectBivariateSpline.test_derivatives_gridc                 C   s   t g d}t g d}t g dg dg dg dg dg}t g d}t g d}t g dd }t|||}t|||d	d
d| t|||d	d
d| t|||d	d	d
d| d S )Nr@   rK  rL  rM  r   r   gUUUUUU?r   r   r5   ry   r   rf  rc     A   r   7             8@r   F)rq  r   )rs  r   rq  rs  r   rN  rt  r0   r0   r1   rQ     s   &z(TestRectBivariateSpline.test_derivativesc                 C   s  t g d}t g d}t g dg dg dg dg dg}t g dg dg dg dg dgd	 }t g d
g d
g dg dg d
g}t g dg dg dg dg dgd	 }t|||}t|dd||| t|dd||| t|dd||| d S )Nr@   rK  rL  rM  r^  r_  r`  ra  rV   rb  rd  re  rg  rj  rl  rn  r   r   r	   r   r   partial_derivativert  r0   r0   r1   #test_partial_derivative_method_grid  sD   z;TestRectBivariateSpline.test_partial_derivative_method_gridc                 C   s   t g d}t g d}t g dg dg dg dg dg}t g d}t g d}t g dd }t|||}t|d	d
||dd| t|d
d	||dd| t|d	d	||dd| d S )Nr@   rK  rL  rM  rw  rx  ry  r~  r   r   Fr   r  rt  r0   r0   r1   test_partial_derivative_method  s6   z6TestRectBivariateSpline.test_partial_derivative_methodc                 C   sn   t g dtd}| }t|j|jf}t|||}tt |dd W d    d S 1 s0w   Y  d S )N)r   r   r    r!   r5   rs   r5   r   )	r	   r   r   r   sizer   r   r   r  r  r0   r0   r1   'test_partial_derivative_order_too_large  s   
"z?TestRectBivariateSpline.test_partial_derivative_order_too_largec                 C   s   t g d}t g d}t g dg dg dg dg dg}t|||}t|||||d d d f |d d d f dd d S )Nr@   rK  rL  rM  Fr   )r	   r   r   r  r0   r0   r1   test_broadcast  s
   &6z&TestRectBivariateSpline.test_broadcastc                 C   s  t t-}tg d}tg d}tg dg dg dg dg dg}t||| W d    n1 s4w   Y  dt|jv sBJ t t-}tg d}tg d}tg dg dg dg dg dg}t||| W d    n1 svw   Y  dt|jv sJ t t*}tg d}tg d}tg dg dg dg dg}t||| W d    n1 sw   Y  d	t|jv sJ t t-}tg d}tg d}tg d
g d
g dg dg d
g}t||| W d    n1 sw   Y  dt|jv sJ t t1}tg d}tg d}tg dg dg dg dg dg}d}t||||d W d    n	1 s?w   Y  dt|jv sNJ t t}t|||dd W d    n	1 sfw   Y  dt|jv suJ d S )N)r   r    r!   r5   rA   r@   rK  rL  rM  x must be strictly increasing)r    r    r!   r5   rA   y must be strictly increasingz7x dimension of z must have same number of elements as x)r   r    r   r    )r   r    r!   r    )r   r    r    r    z7y dimension of z must have same number of elements as yr  r   r  r_   rT   r   )r   r   r	   r   r   r   )r,   r   r-   r.   r   r   r0   r0   r1   r    sl   






z*TestRectBivariateSpline.test_invalid_inputc                 C   s   t g d}t g d}t g dg dg dg dg dg}t g d}t||||d}t| | | | d}t|dd|dd d S )Nr@   rK  rL  rM  )r   rA   r   rA   r   r`   )r	   r   r   r   )r,   r-   r.   r   r   r   r   r0   r0   r1   r     s   z-TestRectBivariateSpline.test_array_like_inputc                 C   s0  d}t jdt j|}t jddt j |}t |}t|||dd}d}d}t || t j }t || d t j }	|||	 | }
d|
d< tt	}||
|	 W d    n1 s^w   Y  d	t
|jv slJ |	 }d|d< tt	}||| W d    n1 sw   Y  d
t
|jv sJ d S )Nr  r   r    rO   rT   r   r!   MbP?r  r  )rZ   randomuniformr   r   r   r[   r   r   r   r   r   )r,   NSampThetaPhiDataInterpolatorNLonNLatGridPosLatsGridPosLonsnonGridPosLatsr  nonGridPosLonsr0   r0   r1   test_not_increasing_input&  s,   



z1TestRectBivariateSpline.test_not_increasing_inputN)r<   r=   r>   rO  r]  rv  rQ   r  r  r  r  r  r   r  r0   r0   r0   r1   rJ  x  s    1rJ  c                   @   sT   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd Zdd Z	dd Z
dd ZdS )TestRectSphereBivariateSplinec              	   C   sv   t ddt d d}t dtd d}tg dg dg dg dg dg dg dg}t|||}t|||| d S N{Gz?r    rE   r   r    r   r    r   r    r   r   r    r!   r    r   r    r   r   r    r    r    r   r    r   )r   r   r	   r   r   r,   r.   r-   r   r/   r0   r0   r1   rO  E  s   z+TestRectSphereBivariateSpline.test_defaultsc              	      s   t ddt d d}t dtd d}tg dg dg dg dg dg dg dg}t||| g d}g d} ||}t fd	d
t||D }t|| d S )Nr  r    rE   r  r  r  )r   r   rP  g@r   gQ@g      @)r&   r   r:  g?gjt?r`   -C6?c                    rS  rT  r0   rU  rW  r0   r1   rX  X  rY  z?TestRectSphereBivariateSpline.test_evaluate.<locals>.<listcomp>)r   r   r	   r   rZ  r   r   )r,   r.   r-   r   r  r  r[  r\  r0   rW  r1   r]  N  s   z+TestRectSphereBivariateSpline.test_evaluatec                 C   s  t t dt ddd jt dt t ddd j}tt&}t d	d
dt j d }t dddt j d }t	||| W d    n1 sLw   Y  dt
|jv sZJ tt&}t dddt j d }t dddt j d }t	||| W d    n1 sw   Y  dt
|jv sJ tt&}t dd
dt j d }t dddt j d }t	||| W d    n1 sw   Y  dt
|jv sJ tt&}t dd
dt j d }t dddt j d }t	||| W d    n1 sw   Y  dt
|jv sJ tt(}t dd
dt j d }t dddt j d }t	|||d	d W d    n	1 s<w   Y  dt
|jv sKJ d S )N     V@      T      T@        f@r$        u@rF   ry      r   ^  u should be between (0, pi)r      K v[0] should be between [-pi, pi)h  "v[-1] should be v[0] + 2pi or lessrT   rI  rZ   dot
atleast_2dr   r%  absr   r   r   r   r   r   r,   r'  r  r1  r2  r0   r0   r1   r  [  F   




z0TestRectSphereBivariateSpline.test_invalid_inputc              
   C   s  t ddt d d}t dtd d}tg dg dg dg dg dg dg dg}t|||}t ddt d d}t dtd d}t|||dd	t|||dd
ddd t|||ddt|||ddddd t|||dddt|||ddddddd t|||dd	|dd|| t|||dd|dd|| t|||ddd|dd|| t|||ddd|dd||dd t|||ddd|dd||dd t|||dddd|dd||dd d S )Nr  r    rE   r  r  r  {Gz?r   )dthetarp  r  rtolrY   )dphirr  )r  r  ư>rq  rs  r
  r  r   Fr  r   r   r  r   r  r  r   )r   r   r	   r   r   _numdiff_2dr   r  r  r0   r0   r1   rv  }  sH   "z3TestRectSphereBivariateSpline.test_derivatives_gridc              
      s:  t ddt d d}t dtd d}tg dg dg dg dg dg dg dg}t||| t ddt d d}t dtd d}t ||dd	d
j|j t ||dd	d
t fdd||ddddd t ||dd	dt fdd||ddddd t ||ddd	dt fdd||ddddddd d S )Nr  r    rE   r  r  r  r  r   Fr  c                        | |ddS NFr   r0   rz   rW  r0   r1   <lambda>      z@TestRectSphereBivariateSpline.test_derivatives.<locals>.<lambda>rp  r  r  r  c                    r  r  r0   rz   rW  r0   r1   r    r  rr  r  c                    r  r  r0   rz   rW  r0   r1   r    r  r  r  r  )r   r   r	   r   r   r   r   r  )r,   r.   r-   r   r0   rW  r1   rQ     s,   
z.TestRectSphereBivariateSpline.test_derivativesc                 C   s  t t dt ddd jt dt t ddd j}tt&}t d	d
dt j d }t d	ddt j d }t	||| W d    n1 sLw   Y  dt
|jv sZJ tt&}t dddt j d }t d	ddt j d }t	||| W d    n1 sw   Y  dt
|jv sJ tt&}t dd
dt j d }t dddt j d }t	||| W d    n1 sw   Y  dt
|jv sJ tt&}t dd
dt j d }t dddt j d }t	||| W d    n1 sw   Y  dt
|jv sJ tt(}t dd
dt j d }t dddt j d }t	|||dd W d    n	1 s<w   Y  dt
|jv sKJ d S )Nr  r  r  r  r  r$   r  rF   r   r  r  r  r      r  r  r  r  r  ry   rT   rI  r  r  r0   r0   r1   test_invalid_input_2  r  z2TestRectSphereBivariateSpline.test_invalid_input_2c              	   C   s   t ddt d d}t dtd d}tg dg dg dg dg dg dg dg}t|||}t| | | }t|||||| d S r  )r   r   r	   r   r   r   )r,   r.   r-   r   r   r   r0   r0   r1   r     s   z3TestRectSphereBivariateSpline.test_array_like_inputc                 C   s   t g d}t g d}t ||}|d |d  }t |}t |}t|||}t t ddg}t t ddg}	|||	}
t d	d
gddgg}t|
| d S )N)ri     #   rh  -   )iiir   r   r   r  g     B@r  g     `Sg     Fg=Eg     HgDioEG)rZ   r	   r   radiansr   r   )r,   r1  r2  meshr'  lat_rlon_rinterpolator	query_lat	query_londata_interpansr0   r0   r1   test_negative_evaluation  s   



z6TestRectSphereBivariateSpline.test_negative_evaluationc                 C   sV   t ddt j d }t ddt j d }t d}dD ]}t|||d|d qd S )Nr   r   )rF   rF   ))TT)TF)FFr   )rU   pole_continuity)rZ   r[   r   r}   r   )r,   uvr   pr0   r0   r1   test_pole_continuity_gh_14591  s   
z;TestRectSphereBivariateSpline.test_pole_continuity_gh_14591N)r<   r=   r>   rO  r]  r  rv  rQ   r  r   r  r  r0   r0   r0   r1   r  D  s    	"!"r  :0yE>c                 C   s   |dkr|dkr| ||S |dkr'|dkr'| || || || | d|  S |dkrA|dkrA| ||| | |||  d|  S |dkrs|dkrs| || || | || ||  | || ||  | || ||  d| d  S t d)Nr   r   r    zinvalid derivative order)r   )funcr-   r.   rq  rs  r
  r0   r0   r1   r    s   
$$"
r  c                   @   s@   e Zd ZdZdd Zdd Zdd Zdd	 Zd
d Zdd Z	dS )Test_DerivedBivariateSplinezgTest the creation, usage, and attribute access of the (private)
    _DerivedBivariateSpline class.
    c              
      s  t tttdtd}t tttdtdd}t t dddt dddf t !}|td t	|| tdddtd	d
ddd| _
W d    n1 sUw   Y  t|| | _tddd}|d }t fddt jD }t|||| _tttdtd| _d S )Nr   r      r!   r   ro   g     3@r5   r&   g     4@r  r	  r   r  r`   c                    s   g | ]}t  |qS r0   )rZ   roll)rV  ir   r0   r1   rX  "  s    z<Test_DerivedBivariateSpline.setup_method.<locals>.<listcomp>)rZ   concatenatelistr   r   r   r   r   r   r   r&  r   
lut_smoothr	   r  r   lut_rect	itertoolsproductorders)r,   r-   r.   r   r   r   zzr0   r  r1   r3    s"   "


z(Test_DerivedBivariateSpline.setup_methodc                 C   N   | j D ]!\}}| j||}|dddd}| jdd||dd}t|| qd S )NrO   Fr   r  )r  r&  r  r   r,   nuxnuylut_derr   r   r0   r0   r1   test_creation_from_LSQ&     z2Test_DerivedBivariateSpline.test_creation_from_LSQc                 C   r  )Ng      @Fr   r  )r  r  r  r   r  r0   r0   r1   test_creation_from_Smooth-  r  z5Test_DerivedBivariateSpline.test_creation_from_Smoothc                 C   sN   | j D ]!\}}| j||}|dddd}| jdd||dd}t|| qd S )Nro   r&   Fr   r  )r  r  r  r   r  r0   r0   r1   test_creation_from_Rect4  r  z3Test_DerivedBivariateSpline.test_creation_from_Rectc                 C   sB   | j dd}tt |j W d    d S 1 sw   Y  d S Nr   )r  r  r   AttributeErrorfpr,   derr0   r0   r1   test_invalid_attribute_fp;  s   
"z5Test_DerivedBivariateSpline.test_invalid_attribute_fpc                 C   sD   | j dd}tt |  W d    d S 1 sw   Y  d S r  )r  r  r   r  r*   r  r0   r0   r1   #test_invalid_attribute_get_residual@  s   

"z?Test_DerivedBivariateSpline.test_invalid_attribute_get_residualN)
r<   r=   r>   __doc__r3  r  r  r  r  r  r0   r0   r0   r1   r    s    r  )r   r   r  )-r  numpyrZ   numpy.testingr   r   r   r   r   r   pytestr   r   r	   r
   r   r   r   r   r   scipy.interpolate._fitpack_pyr   r   r   r   scipy.interpolate._fitpack2r   r   r   r   r   r   r   r   r   r   r   r  r"  rE  rJ  r  r  objectr  r0   r0   r0   r1   <module>   s,    $,  r  z 
U M 
@