o
    gTv                     @   s,  d dl Z d dlZd dlZd dlmZmZmZmZm	Z	m
Z
 d dlmZ d dlZd dlmZmZmZmZmZmZmZmZmZmZmZmZ dd i fddZg dZdd	 Zd
d Zdd Zdd Z G dd dZ!G dd dZ"G dd dZ#G dd dZ$G dd dZ%dd Z&dd Z'dd Z(G d d! d!Z)dS )"    N)assert_almost_equalassert_array_equalassert_array_almost_equalassert_allcloseassert_equalassert_)raises)KroghInterpolatorkrogh_interpolateBarycentricInterpolatorbarycentric_interpolateapproximate_taylor_polynomialCubicHermiteSplinepchipPchipInterpolatorpchip_interpolateAkima1DInterpolatorCubicSplinemake_interp_splinec                 C   s  t jd g d}ttdt|d }||t|d  d t jjd|  |}t 	|}	| t
u rOt jjd|  |}
| |||
fd|i||	}n| ||fd|i||	}|p_d|jd |  | |j|d  dd   }t|j| |r|jdkr| t
u r| t|t|t|
fd|i|t|	 n| t|t|fd|i|t|	 |	jdkr|d u r|jd | dt|  |j|d  dd   }|td f||j  d  }||}t ||\}}t|| d S d S d S )	N  )r               r   r      axis r   )nprandomseedlistrangeleninsertrand	transposezerosr   shaper   sizeslicendimreshapebroadcast_arraysr   )interpolator_clsx_shapey_shapederiv_shaper   
extra_argsxsyxidydxyitarget_shapebs_shapeyvr   r   b/home/ubuntu/cloudmapper/venv/lib/python3.10/site-packages/scipy/interpolate/tests/test_polyint.pycheck_shape   sF   
0
r?   )r   r   r   )r   r      c                  C   s   dd } t ttttt| fD ]8}tD ]3}tD ].}tt| t|D ]!}|tkr0t	|||d | q!dD ]}d|i}t	|||d || q2q!qqqd S )Nc                 S   s   t | ||dS Nr   )r   r5   r7   r   r   r   r>   
spl_interp?      ztest_shapes.<locals>.spl_interp)naturalclampedbc_type)
r	   r   r   r   r   r   SHAPESr$   r%   r?   )rE   ips1s2r   bcextrar   r   r>   test_shapes=   s"   rP   c               	   C   sL   ddd} t D ]}t D ]}tt| t|D ]
}t| ||d| qqqd S )Nr   c                 S      t | ||jS N)r	   derivativesrD   r   r   r>   krogh_derivsO   rF   z(test_derivs_shapes.<locals>.krogh_derivsr   r@   rJ   r$   r%   r?   )rT   rL   rM   r   r   r   r>   test_derivs_shapesN   s   
rV   c                  C   s   ddd} ddd}ddd}ddd	}dd
d}ddd}ddd}ddd}ddd}ddd}	ddd}
ddd}| |||||||||	|
|fD ]!}t D ]}t D ]}tt| t|D ]
}t|||d| q^qRqNqJd S )Nr   c                 S   rQ   rR   )r	   
derivativerD   r   r   r>   krogh_derivY   rF   z&test_deriv_shapes.<locals>.krogh_derivc                 S      t | || S rR   r   rW   rD   r   r   r>   pchip_deriv\      z&test_deriv_shapes.<locals>.pchip_derivc                 S      t | ||dS Nr   rZ   rD   r   r   r>   pchip_deriv2_      z'test_deriv_shapes.<locals>.pchip_deriv2c                 S   rY   rR   r   antiderivativerD   r   r   r>   pchip_antiderivb   r\   z*test_deriv_shapes.<locals>.pchip_antiderivc                 S   r]   r^   ra   rD   r   r   r>   pchip_antideriv2e   r`   z+test_deriv_shapes.<locals>.pchip_antideriv2c                 S   s   G dd dt }|| ||S )Nc                   @      e Zd Zdd ZdS )z9test_deriv_shapes.<locals>.pchip_deriv_inplace.<locals>.Pc                 S   s   t | |dS )Nr   )r   __call__)selfr5   r   r   r>   rf   j   rF   zBtest_deriv_shapes.<locals>.pchip_deriv_inplace.<locals>.P.__call__N)__name__
__module____qualname__rf   r   r   r   r>   Pi   s    rk   )r   )r5   r7   r   rk   r   r   r>   pchip_deriv_inplaceh   s   z.test_deriv_shapes.<locals>.pchip_deriv_inplacec                 S   rY   rR   )r   rW   rD   r   r   r>   akima_derivo   r\   z&test_deriv_shapes.<locals>.akima_derivc                 S   rY   rR   )r   rb   rD   r   r   r>   akima_antiderivr   r\   z*test_deriv_shapes.<locals>.akima_antiderivc                 S   rY   rR   )r   rW   rD   r   r   r>   cspline_derivu   r\   z(test_deriv_shapes.<locals>.cspline_derivc                 S   rY   rR   )r   rb   rD   r   r   r>   cspline_antiderivx   r\   z,test_deriv_shapes.<locals>.cspline_antiderivc                 S      t | ||d S rB   )r   rW   rD   r   r   r>   
bspl_deriv{   r`   z%test_deriv_shapes.<locals>.bspl_derivc                 S   rq   rB   )r   rb   rD   r   r   r>   bspl_antideriv~   r`   z)test_deriv_shapes.<locals>.bspl_antiderivr   r@   rU   )rX   r[   r_   rc   rd   rl   rm   rn   ro   rp   rr   rs   rK   rL   rM   r   r   r   r>   test_deriv_shapesX   s0   











rt   c                  C   sp   g d} g d}t tttfD ]}|| |}t|||  qg d}t| ||}t|||  t||| d d S )Nr   r   r   r   )r   r                 ?r   )r   y             r   y              @r   )r	   r   r   r   r   r   )r5   r7   rK   pr9   r   r   r>   test_complex   s   
rx   c                   @   s   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd Zdd Z	dd Z
dd Zdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ Zd%d& Zd'S )(	TestKroghc                 C   B   t g d| _t ddd| _t ddd| _| | j| _d S N)r   r   rA   r   r   d   rA   r    poly1d	true_polylinspacetest_xsxsysrg   r   r   r>   setup_method      zTestKrogh.setup_methodc                 C   *   t | j| j}t| | j|| j d S rR   r	   r   r   r   r   r   rg   rk   r   r   r>   test_lagrange      zTestKrogh.test_lagrangec                 C   F   t | j| j}t| d|d t| td|td d S N   )r	   r   r   r   r   r    arrayr   r   r   r>   test_scalar      $zTestKrogh.test_scalarc                 C   sN   t | j| j}|| j}t|jd D ]}t| j	|| j||  qd S )Nr   )
r	   r   r   rS   r   r$   r*   r   r   derivrg   rk   Dir   r   r>   test_derivatives   s   zTestKrogh.test_derivativesc                 C   sZ   t | j| j}|| jt| jd }t|jd D ]}t| j	
|| j||  qd S )Nr   r   )r	   r   r   rS   r   r%   r$   r*   r   r   r   r   r   r   r>   test_low_derivatives   s   zTestKrogh.test_low_derivativesc                 C   sJ   t | j| j}d}|| j|}t|D ]}t|| j|||  qd S )N
   )r	   r   r   rS   r   r$   r   rW   )rg   rk   mrr   r   r   r>   test_derivative   s   zTestKrogh.test_derivativec                 C   sR   t | j| j}tt| jdt| j D ]}t|| j|t	t| j qd S r^   )
r	   r   r   r$   r%   r   rW   r   r    r)   )rg   rk   r   r   r   r>   test_high_derivative   s   zTestKrogh.test_high_derivativec                 C   r   rR   r   r   r   r   r>   test_hermite   r   zTestKrogh.test_hermitec              	      s   g dt ddgddgddggt}fddtjd D }t ddd	 t| t  fd
d|D j t|	 t 
t  fdd|D d d S )Nr   r   r   r   r   r   c                    s"   g | ]}t  d d |f qS rR   )r	   .0r   )r   r   r   r>   
<listcomp>      " z)TestKrogh.test_vector.<locals>.<listcomp>r   r   r~   c                       g | ]}| qS r   r   r   rw   r   r   r>   r          c                    s   g | ]}|  qS r   )rS   r   r   r   r>   r      s    )r   r   r   )r    r   r	   r$   r*   r   r   asarrayTrS   r(   rg   rk   Pir   )r   r   r   r>   test_vector   s   

zTestKrogh.test_vectorc                 C   s    t | j| j}t|g g  d S rR   )r	   r   r   r   r   r   r   r>   
test_empty   s   zTestKrogh.test_emptyc                 C   n   t | j| j}tt|dd tt|tdd tt|dgd tt|ddgd d S Nr   r   r   r   )r   )r	   r   r   r   r    r*   r   r   r   r   r>   test_shapes_scalarvalue   
   z!TestKrogh.test_shapes_scalarvaluec                 C   s   t | j| j}|j}tt|d|f tt|td|f tt|dg|df tt|ddg|df d S )Nr   r   r   )	r	   r   r   nr   r    r*   rS   r   rg   rk   r   r   r   r>   "test_shapes_scalarvalue_derivative   s   "z,TestKrogh.test_shapes_scalarvalue_derivativec                 C   b   t | jt| jtd}tt|dd tt|dgd tt|ddgd d S Nr   r   )r   )r   r   r   )r   r   )r	   r   r    outerr   aranger   r*   r   r   r   r>   test_shapes_vectorvalue      z!TestKrogh.test_shapes_vectorvaluec                 C   ^   t | jt| jdg}tt|dd tt|dgd tt|ddgd d S Nr   r   r   )r   r   )r   r   )r	   r   r    r   r   r   r*   r   r   r   r>   test_shapes_1d_vectorvalue      z$TestKrogh.test_shapes_1d_vectorvaluec                 C   s~   t | jt| jtd}|j}tt|	d|df tt|	dg|ddf tt|	ddg|ddf d S )Nr   r   r   r   )
r	   r   r    r   r   r   r   r   r*   rS   r   r   r   r>   "test_shapes_vectorvalue_derivative   s
   $z,TestKrogh.test_shapes_vectorvalue_derivativec                 C   s   t | j| j}t}t|| j|| j| j| j t|| jd|| j| j| jdd t|| jd|| j| j| jddgd d S )Nr   derr   r   )r	   r   r   r
   r   r   rW   rS   )rg   rk   kir   r   r>   test_wrapper   s   zTestKrogh.test_wrapperc                 C   sJ   g d}t g d}t||}tt||| ||d ddd d S )N)r      i  i  i  i  i|  i$	  i  i  i   i03  i`  )gffffffg닥ąg䑉g!p$ЀgV0޿gx*ZֿgDпg2]g H.g9Cg6D.gG/g?r   r   g|=atol)r    r   r	   r   absrW   )rg   r5   
offset_cdffr   r   r>   test_int_inputs  s   

zTestKrogh.test_int_inputsc                 C   sl   t g dt g d}}t||}|d}t||jddt||jd  }t||dd d S )N)r   r   r   r   r   )r   rv   r   r   rv   r   rv   V瞯<r   )r    r   r	   rS   realimagr   )rg   r5   r7   funccmplxcmplx2r   r   r>   test_derivatives_complex  s   

z"TestKrogh.test_derivatives_complexc                 C   sJ   t jtdd ttdtd W d    d S 1 sw   Y  d S )Nz40 degrees provided,)match(   )pytestwarnsUserWarningr	   r    r   onesr   r   r   r>   test_high_degree_warning  s   "z"TestKrogh.test_high_degree_warningN)rh   ri   rj   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r>   ry      s(    	
ry   c                   @   re   )
TestTaylorc                 C   sP   d}t tjd|dd}t|d D ]}t|dd | }qt|dd d S )NrA   r   r      )r   r    expr$   r   r   )rg   degreerw   r   r   r   r>   test_exponential  s   
zTestTaylor.test_exponentialN)rh   ri   rj   r   r   r   r   r>   r     s    r   c                   @   st   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd Zdd Z	dd Z
dd Zdd Zdd Zdd Zdd ZdS )TestBarycentricc                 C   rz   r{   r   r   r   r   r>   r   )  r   zTestBarycentric.setup_methodc                 C   r   rR   )r   r   r   r   r   r   r   r   r   r>   r   /  r   zTestBarycentric.test_lagrangec                 C   r   r   )r   r   r   r   r   r    r   r   r   r   r>   r   3  r   zTestBarycentric.test_scalarc                 C   s2   t | j}|| j t| | j|| j d S rR   )r   r   set_yir   r   r   r   r   r   r   r>   test_delayed8  s   
zTestBarycentric.test_delayedc                 C   sZ   t | jd d | jd d }|| jdd  | jdd   t| | j|| j d S )Nr   )r   r   r   add_xir   r   r   r   r   r   r>   test_append=  s    zTestBarycentric.test_appendc                    s   g dt ddgddgddggt  } fddtjd D }t ddd	t|t fd
d|D j d S )Nr   r   r   r   c                    s"   g | ]} d d |f qS rR   r   r   )BIr   r   r   r>   r   G  r   z/TestBarycentric.test_vector.<locals>.<listcomp>r   r   r~   c                    r   r   r   r   r   r   r>   r   J  r   )	r    r   r   r$   r*   r   r   r   r   r   r   )r   r   r   r   r>   r   B  s   
 zTestBarycentric.test_vectorc                 C   r   r   )r   r   r   r   r    r*   r   r   r   r   r>   r   L  r   z'TestBarycentric.test_shapes_scalarvaluec                 C   r   r   )r   r   r    r   r   r   r   r*   r   r   r   r>   r   S  r   z'TestBarycentric.test_shapes_vectorvaluec                 C   r   r   )r   r   r    r   r   r   r*   r   r   r   r>   r   Y  r   z*TestBarycentric.test_shapes_1d_vectorvaluec                 C   s4   t | j| j}t| j| j| j}t|| j| d S rR   )r   r   r   r   r   r   )rg   rk   valuesr   r   r>   r   _  s   zTestBarycentric.test_wrapperc                 C   s6   dt dd }t dd}t||d}t|d d S )Ni  r      g     @g      #@)r    r   r   r   )rg   r5   r7   valuer   r   r>   test_int_inputd  s   zTestBarycentric.test_int_inputc                 C   s   d}t |d t j}t |t j | }d| }|d  d9  < |d  d9  < t|}|jd }t|jd|  | d S )Ni   r   r   r         ?r   )	r    r   astypefloat64cospir   wir   )rg   r   jr5   wrk   factorr   r   r>   test_large_chebyshevj  s   	
z$TestBarycentric.test_large_chebyshevc                 C   s\   t ddgddg}tjdd ||j}W d    n1 sw   Y  t||j  d S )Nr   r   r   raise)divide)r   r    errstater8   r   r:   ravel)rg   rk   r:   r   r   r>   test_warning  s
   zTestBarycentric.test_warningN)rh   ri   rj   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r>   r   (  s    
r   c                   @   s^   e Zd ZdddZdd Zdd Zdd	 Zd
d Zdd Zdd Z	dd Z
dd Zdd ZdS )	TestPCHIP   c                 C   s:   t jd t t j|}t j|}t||||fS )Nr   )r    r!   r"   sortr   )rg   nptsr8   r:   r   r   r>   _make_random  s   zTestPCHIP._make_randomc                 C   s   |   \}}}tt|d D ]<}|| ||d  }}|| ||d  }}||kr0||}}t||d}	||	}
t||
d k|
|d k@   qd S )Nr   r   r   r   r$   r%   r    r   r   allrg   rw   r8   r:   r   x1x2y1y2xpypr   r   r>   test_overshoot  s   
"zTestPCHIP.test_overshootc                 C   s   |   \}}}tt|d D ]9}|| ||d  }}|| ||d  }}t||d}	||	}
t|| |
dd  |
d d   dk  qd S )Nr   r   r   r   r   r   r   r>   test_monotone  s   .zTestPCHIP.test_monotonec                 C   sh   t g dg dg}t d}t|d |d |}|d }t|d |d |}t||ddd d S )	N)
r   r         /   <   O   W   c   r~   )
r  ir|   r     &   -   5   7   r~   r   r         ?+=)r   rtol)r    r   r   r   r   )rg   dataxxcurvedata1curve1r   r   r>   	test_cast  s   

zTestPCHIP.test_castc                 C   sz   d}t t|}t|d d df |d d df }d}t t|}t|d d df ||d d df ddd d S )Na  
          7.99   0.00000E+0
          8.09   0.27643E-4
          8.19   0.43750E-1
          8.70   0.16918E+0
          9.20   0.46943E+0
         10.00   0.94374E+0
         12.00   0.99864E+0
         15.00   0.99992E+0
         20.00   0.99999E+0
        r   r   a^  
           7.9900       0.0000
           9.1910       0.4640
          10.3920       0.9645
          11.5930       0.9965
          12.7940       0.9992
          13.9950       0.9998
          15.1960       0.9999
          16.3970       1.0000
          17.5980       1.0000
          18.7990       1.0000
          20.0000       1.0000
                g-C6
?r  r   )r    loadtxtioStringIOr   r   )rg   dataStrr  pch	resultStrresultr   r   r>   test_nag  s   "0zTestPCHIP.test_nagc                 C   sp   t g d}t g d}t g d}t||t||fD ]}|d |d fD ]}t||ddk q)qd S )N)r  g?g      ?gffffff?)皙uq@g     @@     @@     @)r(  r*  g     p@r)  r   r   r   )r    r   r   r   )rg   r5   r  r  pptr   r   r>   test_endslopes  s   zTestPCHIP.test_endslopesc                 C   sp   t d}t |}t  td t||}W d    n1 s#w   Y  t ddd}t||d d S )Nr   errorr   	   e   r  )	r    r   
zeros_likewarningscatch_warningsfilterwarningsr   r   r   )rg   r5   r7   r$  r  r   r   r>   test_all_zeros  s   



zTestPCHIP.test_all_zerosc                 C   s:   t ddd}tddgddg}t||d| dd d S )Nr   r   r   r   r   r   )r    r   r   r   )rg   r5   rw   r   r   r>   test_two_points  s   zTestPCHIP.test_two_pointsc                 C   st   t tg dg ddgdddg t tg dg ddgdddg t tg dg ddgddgddgdgg d S )	Nr   r   r   )r   rA   r   r   r   r   r  r   g      @)r   r   r   r   r   r>   test_pchip_interpolate  s   
z TestPCHIP.test_pchip_interpolatec                 C   s(   t ddgddg}| }t|d d S )Nr   r   r   r   )r   rootsr   )rg   rw   r   r   r   r>   
test_roots  s   zTestPCHIP.test_rootsN)r   )rh   ri   rj   r   r  r  r  r'  r-  r5  r6  r8  r:  r   r   r   r>   r     s    

#
	r   c                   @   sf   e Zd Ze		dddZdd Zdd Zd	d
 Zdd Zdd Z	dd Z
dd Zdd Zdd ZdS )TestCubicSpline
not-a-knotr  c                 C   s  | j }| j}t|}||jd gdg|jd   }|dd }t|dddf |dddf |d  |dddf |d   |dddf |  |dddf  ||d t|dddf d|dddf  |d  d|dddf  |  |dddf  ||d t|dddf d|dddf  | |dddf  ||d |jdkr|dkr|dkrt|d d||d dS |d	krt| |d d| |d d||d t| |d d| |d d||d t| |d d| |d d||d dS |dkr1|jdkr$| |d | |d  |d  }t| |d d|||d nDt|d
 |d ||d n7|dkrDt| |d dd||d n$|dkrWt| |d dd||d n|\}	}
t| |d |	|
||d |dkr|jdkr| |d | |d  |d  }t| |d d|||d dS t|d |d ||d dS |dkrt| |d dd||d dS |dkrt| |d ddd| d| d dS |\}	}
t| |d |	|
||d dS )zVCheck that spline coefficients satisfy the continuity and boundary
        conditions.r   r   r   Nr   r   r  r<  periodic)r   r   )r   r   rH   rG   )r   r   )r   r|   )	r5   cr    diffr.   r*   r-   r   r+   )Sbc_startbc_endtolr5   r>  dxdxislopeorderr   r   r   r>   check_correctness  sh   
">*6$$$
 


 

&z!TestCubicSpline.check_correctnessc                 C   s   t |j}||= t|}|d t|}|d dddd|fd|fg}|d d D ]}t||||d}	| |	|| q-|D ]}
|D ]}t||||
|fd}	| j|	|
|d	d
 qEqAd S )Nr   r   r<  rG   rH   r   r   r   rI   g+=rC  )r#   r*   r    emptyfillr   rH  )rg   r5   r7   r   r3   first_derivsecond_derivbc_allrN   r@  rA  rB  r   r   r>   check_all_bcJ  s*   




zTestCubicSpline.check_all_bcc                 C   s   t g d}t g d}dd|jfD ]^}| |d | |d | d t d|df}|d | |dd d df< |d | d |dd d df< |d | d |dd d df< |d | d |dd d df< | |d | |d qd S )N)r   r   r   r   r   g      @g      @r/  )r   g      r   r   g      @r   r   r   r   r   r   r   )r    r   r+   rP  rK  )rg   r5   r7   r   Yr   r   r>   test_generala  s   zTestCubicSpline.test_generalc                 C   s   dD ]`}t ddt j |}t |}t||dd}| |dd t d|df}||dd d df< |d |dd d df< |d |dd d df< |d |dd d df< t||ddd}| |dd qd S )	N)r   r   rA   r   r   r=  rI   r   rA   rI  )r    r   r   r   r   rH  rK  )rg   r   r5   r7   r@  rQ  r   r   r>   test_periodicn  s   
zTestCubicSpline.test_periodicc                 C   sP   t ddt j d}t |}t||dd}t|d|ddt j  dd d S )	Nr   r   r   r=  rS  r   r   )decimal)r    r   r   r   r   r   rg   r5   r7   r@  r   r   r>   test_periodic_eval}  s   
$z"TestCubicSpline.test_periodic_evalc                 C   s>   t g d}t g d}t||ddd}| |dd d S )N)??gffffff? @@      @g333333@g@g@g      @g      @g      @g       @gffffff"@g      %@g&@g333333'@g      (@g333333)@g      *@g*@)rY  g      ?g?rZ  r[  g@g333333@g333333@gffffff @rZ        @gffffff@r]  g333333?gffffff?rX  gffffff?g333333?r   g?rY  r=  )rI   extrapolate)r    r   r   rH  rV  r   r   r>   *test_second_derivative_continuity_gh_11758  s   z:TestCubicSpline.test_second_derivative_continuity_gh_11758c                 C   sZ   t g d}t g d}t||dd}| |dd t|d|t g d d S )N)r  g      @r\  )r  g      .@r  r=  rS  r   )      Hr`  r`  )r    r   r   rH  r   rW   rV  r   r   r>   test_three_points  s
   "z!TestCubicSpline.test_three_pointsc                 C   s   t jg dtd}t jg dtd}t||}| | t g d}t||}| | t||d dd}| |dd	 t g d}t||d
dgd}| |d
d d S )N)r   r   r   r   )dtype)r   r   r   )y            ?r  y      ?      y      ?      r   )rG   r   y               @rS  rG   rd  )r   y       @      ?)r   y      ?      )r    r   intr   rH  rV  r   r   r>   test_dtypes  s   



zTestCubicSpline.test_dtypesc                 C   sJ   t jd}t |jdd}d|jdd }t||}| j|dd d S )Nr   r~   )r+   g     @gvIh%<=rJ  )r    r!   RandomStater   uniformr   rH  )rg   rngr5   r7   r@  r   r   r>   test_small_dx  s
   
zTestCubicSpline.test_small_dxc              	   C   s  t g d}t g d}t g d}t t jdddg}t g d}t t jdddg}g d}dg}dg}	ttt|| ttt|| ttt|| ttt|| ttt|| ttt|d d t jf | ttt||	 g d	}
|
D ]}ttt||d
|d qxt j||f }d}ddg dff}ddd
d
ggff}ttt||d
|d ttt||d
|d ttt||d
|d ttt||d
dd d S )Nru   )y      ?      ?r   r   r   r   r   r   )r   r   r   r   r7  r   ))r=  rH   ))r   r   )r   r   )r   r   )r  r  z
not-a-typor   T)rH   rk  rH   )r   r   r   r=  )r    r   nanassert_raises
ValueErrorr   newaxisc_)rg   r5   r7   xcxnxoyny3r   r  wrong_bcrI   rQ  bc1bc2bc3r   r   r>   test_incorrect_inputs  s6   z%TestCubicSpline.test_incorrect_inputsN)r<  r<  r  )rh   ri   rj   staticmethodrH  rP  rR  rT  rW  r_  ra  rf  rj  rz  r   r   r   r>   r;    s    ;	r;  c                  C   sN   g d} g d}g d}t | ||}t|| |dd t|| d|dd d S )N)r   r   r   )r   r   r   )r   r   r   r   )r  r   )r   r   )r5   r7   r9   r6   r   r   r>   #test_CubicHermiteSpline_correctness  s   r|  c                  C   sH   g d} g d}g d}t tt| || ddtjg}t tt| || d S )Nr7  )r   r   rA   )r   r   r   r   r   r   )rm  rn  r   r    rl  )r5   r7   r9   dydx_with_nanr   r   r>   &test_CubicHermiteSpline_error_handling  s   r~  c                  C   sd   t ddg} t ddg}t ddg}t| ||}|jdd}t|jjd	 d	 t|jd
 d S )NgMbP?gMb`?gBܻ>gdJ>g/"g%"T)r^  r   r   )r    r   r   r9  r   r>  r*   r+   )r5   r7   dyrw   r   r   r   r>   test_roots_extrapolate_gh_11185  s   r  c                   @   s   e Zd Zejdededgejdg dejdg dejdee	gd	d
 Z
ejdededgejdg dejdeegdd ZdS )TestZeroSizeArraysr7   )r   r   rA   )r   rA   r   rI   )r<  r=  rG   rH   r   r   clsc           
      C   s   t d}t d}||||d}||jdksJ ||j|j|jdd   ks+J t |d|}|||||d}|jd | |jf |j|d d   }	||jdksWJ ||j|	ks`J d S )Nr   r   rS  r   r   )rI   r   r    r   r+   r*   moveaxis)
rg   r  r7   rI   r   r5   xvalobjytshr   r   r>   test_zero_size   s   

"(z!TestZeroSizeArrays.test_zero_sizec           	      C   s   t d}t d}|||}||jdksJ ||j|j|jdd   ks)J t |d|}||||d}|jd | |jf |j|d d   }||jdksTJ ||j|ks]J d S )Nr   r   r   r   rC   r  )	rg   r  r7   r   r5   r  r  r  r  r   r   r>   test_zero_size_2  s   


"(z#TestZeroSizeArrays.test_zero_size_2N)rh   ri   rj   r   markparametrizer    r)   r   r   r  r   r   r  r   r   r   r>   r    s     r  )*r2  r!  numpyr    numpy.testingr   r   r   r   r   r   r   r   rm  scipy.interpolater	   r
   r   r   r   r   r   r   r   r   r   r   r?   rJ   rP   rV   rt   rx   ry   r   r   r   r;  r|  r~  r  r  r   r   r   r>   <module>   s4     8
'
2 
f M	
