o
    gv                     @   s8  d Z g dZddlZddlmZ ddlZddlmZ ddl	m
Z
 ddlmZ dd	lmZ dd
lmZ dddddZdZdZdd Zdd Zd4ddZedddde d5dd Zed!d"d#de d5d$d%Zed&d'd(de d5d)d*Zed+d,d-de d5d.d/Ze 		d6d0d1Ze 		d7d2d3ZdS )8z,Iterative methods for solving linear systems)bicgbicgstabcgcgsgmresqmr    N)dedent   )
_iterative)LinearOperator)make_system)_aligned_zeros)non_reentrantsdcz)fr   FDzC
Parameters
----------
A : {sparse matrix, ndarray, LinearOperator}aX  b : ndarray
    Right hand side of the linear system. Has shape (N,) or (N,1).

Returns
-------
x : ndarray
    The converged solution.
info : integer
    Provides convergence information:
        0  : successful exit
        >0 : convergence to tolerance not achieved, number of iterations
        <0 : illegal input or breakdown

Other Parameters
----------------
x0 : ndarray
    Starting guess for the solution.
tol, atol : float, optional
    Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
    The default for ``atol`` is ``'legacy'``, which emulates
    a different legacy behavior.

    .. warning::

       The default value for `atol` will be changed in a future release.
       For future compatibility, specify `atol` explicitly.
maxiter : integer
    Maximum number of iterations.  Iteration will stop after maxiter
    steps even if the specified tolerance has not been achieved.
M : {sparse matrix, ndarray, LinearOperator}
    Preconditioner for A.  The preconditioner should approximate the
    inverse of A.  Effective preconditioning dramatically improves the
    rate of convergence, which implies that fewer iterations are needed
    to reach a given error tolerance.
callback : function
    User-supplied function to call after each iteration.  It is called
    as callback(xk), where xk is the current solution vector.
c                 C   s$   t j| }||kr|dfS |dfS )z;
    Successful termination condition for the solvers.
    r	   r   nplinalgnorm)residualatolresid r   c/home/ubuntu/cloudmapper/venv/lib/python3.10/site-packages/scipy/sparse/linalg/_isolve/iterative.py	_stoptestC   s   r   c                 C   st   |du rt jdj|dtdd d}t| } |dkr/| }|| kr#dS |dkr)| S | t| S tt|| t| S )	a  
    Parse arguments for absolute tolerance in termination condition.

    Parameters
    ----------
    tol, atol : object
        The arguments passed into the solver routine by user.
    bnrm2 : float
        2-norm of the rhs vector.
    get_residual : callable
        Callable ``get_residual()`` that returns the initial value of
        the residual.
    routine_name : str
        Name of the routine.
    Na	  scipy.sparse.linalg.{name} called without specifying `atol`. The default value will be changed in a future release. For compatibility, specify a value for `atol` explicitly, e.g., ``{name}(..., atol=0)``, or to retain the old behavior ``{name}(..., atol='legacy')``)name   category
stacklevellegacyexitr   )warningswarnformatDeprecationWarningfloatmax)tolr   bnrm2get_residualroutine_namer   r   r   r   	_get_atolN   s    r1    0c                    s    fdd}|S )Nc              	      s*   d td dd ttf| _| S )N
z    z
    )joincommon_doc1replacecommon_doc2r   __doc__)fnAinfofooterheaderr   r   combinex   s
   zset_docstring.<locals>.combiner   )r>   r<   r=   atol_defaultr?   r   r;   r   set_docstringw   s   rA   z7Use BIConjugate Gradient iteration to solve ``Ax = b``.zThe real or complex N-by-N matrix of the linear system.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` and ``A^T x`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.a1                 Examples
               --------
               >>> import numpy as np
               >>> from scipy.sparse import csc_matrix
               >>> from scipy.sparse.linalg import bicg
               >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
               >>> b = np.array([2, 4, -1], dtype=float)
               >>> x, exitCode = bicg(A, b)
               >>> print(exitCode)            # 0 indicates successful convergence
               0
               >>> np.allclose(A.dot(x), b)
               True

               )r=   h㈵>c              
      s  t | || \} } }t }	|d u r|	d }| j| j}
|j|j}}tjj }tt|d } fdd}t	||t
j |d}|dkrQ|dfS |}d}d	}td
|	 jd}d}d}d}|}	 |}| |||||||	\	}}}}}}}}|d ur||kr| t|d |d |	 }t|d |d |	 }|d	kr|d ur| n|dkr||  |9  < ||  |||  7  < nd|dkr||  |9  < ||  ||
||  7  < nI|dkr||| ||< n<|dkr||| ||< n/|dkr||  |9  < ||  | 7  < n|d
kr.|r%d	}d}t|| |\}}d}qi|dkrB||krB||ksB|}||fS )N
   
bicgrevcomc                         t j  S Nr   r   bmatvecxr   r   <lambda>       zbicg.<locals>.<lambda>r   r&   r   r	      dtypeT      r!      F)r   lenrI   rmatvec
_type_convrP   chargetattrr
   r1   r   r   r   r   slicer   )ArH   x0r-   maxiterMcallbackr   postprocessnrU   psolverpsolveltrrevcomr/   r   ndx1ndx2workijobinfoftflagiter_olditersclr1sclr2slice1slice2r   rG   r   r      sn   

 r   zBUse BIConjugate Gradient STABilized iteration to solve ``Ax = b``.zThe real or complex N-by-N matrix of the linear system.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.a                 Examples
               --------
               >>> import numpy as np
               >>> from scipy.sparse import csc_matrix
               >>> from scipy.sparse.linalg import bicgstab
               >>> R = np.array([[4, 2, 0, 1],
               ...               [3, 0, 0, 2],
               ...               [0, 1, 1, 1],
               ...               [0, 2, 1, 0]])
               >>> A = csc_matrix(R)
               >>> b = np.array([-1, -0.5, -1, 2])
               >>> x, exit_code = bicgstab(A, b)
               >>> print(exit_code)  # 0 indicates successful convergence
               0
               >>> np.allclose(A.dot(x), b)
               True
               c              
      s*  t | || \} } }t }	|d u r|	d }| j|j}
tjj }tt|d } fdd}t||t	j
 |d}|dkrI|dfS |}d}d	}td
|	 jd}d}d}d}|}	 |}| |||||||	\	}}}}}}}}|d ur||kr| t|d |d |	 }t|d |d |	 }|d	kr|d ur| nW|dkr||  |9  < ||  |||  7  < n9|dkr|
|| ||< n,|dkr||  |9  < ||  | 7  < n|dkr|rd	}d}t|| |\}}d}qa|dkr||kr||ks|}||fS )NrC   bicgstabrevcomc                      rE   rF   r   r   rG   r   r   rK      rL   zbicgstab.<locals>.<lambda>r   r&   r   r	   rM      rO   TrQ   rR   r!   Fr   rT   rI   rV   rP   rW   rX   r
   r1   r   r   r   r   rY   r   rZ   rH   r[   r-   r\   r]   r^   r   r_   r`   ra   rc   rd   r/   r   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   r   rG   r   r      sd   r   z5Use Conjugate Gradient iteration to solve ``Ax = b``.zThe real or complex N-by-N matrix of the linear system.
``A`` must represent a hermitian, positive definite matrix.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.a                 Examples
               --------
               >>> import numpy as np
               >>> from scipy.sparse import csc_matrix
               >>> from scipy.sparse.linalg import cg
               >>> P = np.array([[4, 0, 1, 0],
               ...               [0, 5, 0, 0],
               ...               [1, 0, 3, 2],
               ...               [0, 0, 2, 4]])
               >>> A = csc_matrix(P)
               >>> b = np.array([-1, -0.5, -1, 2])
               >>> x, exit_code = cg(A, b)
               >>> print(exit_code)    # 0 indicates successful convergence
               0
               >>> np.allclose(A.dot(x), b)
               True

               c              
      sb  t | || \} } }t }	|d u r|	d }| j|j}
tjj }tt|d } fdd}t||t	j
 |d}|dkrI|dfS |}d}d	}td
|	 jd}d}d}d}|}	 |}| |||||||	\	}}}}}}}}|d ur||kr| t|d |d |	 }t|d |d |	 }|d	kr|d ur| ns|dkr||  |9  < ||  |||  7  < nU|dkr|
|| ||< nH|dkr||  |9  < ||  | 7  < n/|d
kr|rd	}d}t|| |\}}|dkr|dkr  ||< t|| |\}}d}qa|dkr+||kr+||ks+|}||fS )NrC   cgrevcomc                      rE   rF   r   r   rG   r   r   rK   R  rL   zcg.<locals>.<lambda>r   r&   r   r	   rM   r!   rO   TrQ   rR   Frs   rt   r   rG   r   r   ,  sj   
 r   z=Use Conjugate Gradient Squared iteration to solve ``Ax = b``.zThe real-valued N-by-N matrix of the linear system.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.a                 Examples
               --------
               >>> import numpy as np
               >>> from scipy.sparse import csc_matrix
               >>> from scipy.sparse.linalg import cgs
               >>> R = np.array([[4, 2, 0, 1],
               ...               [3, 0, 0, 2],
               ...               [0, 1, 1, 1],
               ...               [0, 2, 1, 0]])
               >>> A = csc_matrix(R)
               >>> b = np.array([-1, -0.5, -1, 2])
               >>> x, exit_code = cgs(A, b)
               >>> print(exit_code)  # 0 indicates successful convergence
               0
               >>> np.allclose(A.dot(x), b)
               True
               c              
      s  t | || \} } }t }	|d u r|	d }| j|j}
tjj }tt|d } fdd}t||t	j
 |d}|dkrI|dfS |}d}d	}td
|	 jd}d}d}d}|}	 |}| |||||||	\	}}}}}}}}|d ur||kr| t|d |d |	 }t|d |d |	 }|d	kr|d ur| ns|dkr||  |9  < ||  |||  7  < nU|dkr|
|| ||< nH|dkr||  |9  < ||  | 7  < n/|dkr|rd	}d}t|| |\}}|dkr|dkr  ||< t|| |\}}d}qa|dkr/t  |\}}|r/d}|dkr@||kr@||ks@|}||fS )NrC   	cgsrevcomc                      rE   rF   r   r   rG   r   r   rK     rL   zcgs.<locals>.<lambda>r   r&   r   r	   rM   rr   rO   TrQ   rR   r!   Firs   )rZ   rH   r[   r-   r\   r]   r^   r   r_   r`   ra   rc   rd   r/   r   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   okr   rG   r   r     sr   

 r   c           )         s  |du r|}n|durt dd}tj|tdd |dur)|
du r)tjdtdd |
du r/d	}
|
d
vr:t d|
|du r@d}
t| || \} } }t }|du rX|d }|du r^d}t||}| j|j}t	j
j }tt|d }tj }tj| } fdd}t||	||d}	|	dkr|dfS |dkr| dfS d}|t||	|  }tj}tj}d}d}td| | j
d}t|d d| d  j
d}d}d}d}|}|} d}!d}"d}#	 |}$| ||||||||||\	}}}}}}%}&}|
dkr||$kr| t|d |d | }'t|d |d | }(|dkrD|
dv r:|"r9|||  n	|
dkrC| n|dkr^||(  |&9  < ||(  |% 7  < n|dkrx|||( ||'< |!su| dkrud}"d}!no|dkr||(  |&9  < ||(  |%||'  7  < |"r|
dv r|||  d}"|#d }#n?|dkr|rd}d}t||' |	\}}|s||krtdd| }ntd d!| }|dkr|t||	|  }n|| }|} d}|
d	kr|#|kr|}nq|dkr||	ks|}||fS )"a  
    Use Generalized Minimal RESidual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, ndarray, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : ndarray
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : ndarray
        The converged solution.
    info : int
        Provides convergence information:
          * 0  : successful exit
          * >0 : convergence to tolerance not achieved, number of iterations
          * <0 : illegal input or breakdown

    Other parameters
    ----------------
    x0 : ndarray
        Starting guess for the solution (a vector of zeros by default).
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
        The default for ``atol`` is ``'legacy'``, which emulates
        a different legacy behavior.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    restart : int, optional
        Number of iterations between restarts. Larger values increase
        iteration cost, but may be necessary for convergence.
        Default is 20.
    maxiter : int, optional
        Maximum number of iterations (restart cycles).  Iteration will stop
        after maxiter steps even if the specified tolerance has not been
        achieved.
    M : {sparse matrix, ndarray, LinearOperator}
        Inverse of the preconditioner of A.  M should approximate the
        inverse of A and be easy to solve for (see Notes).  Effective
        preconditioning dramatically improves the rate of convergence,
        which implies that fewer iterations are needed to reach a given
        error tolerance.  By default, no preconditioner is used.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as `callback(args)`, where `args` are selected by `callback_type`.
    callback_type : {'x', 'pr_norm', 'legacy'}, optional
        Callback function argument requested:
          - ``x``: current iterate (ndarray), called on every restart
          - ``pr_norm``: relative (preconditioned) residual norm (float),
            called on every inner iteration
          - ``legacy`` (default): same as ``pr_norm``, but also changes the
            meaning of 'maxiter' to count inner iterations instead of restart
            cycles.
    restrt : int, optional, deprecated

        .. deprecated:: 0.11.0
           `gmres` keyword argument `restrt` is deprecated infavour of
           `restart` and will be removed in SciPy 1.12.0.

    See Also
    --------
    LinearOperator

    Notes
    -----
    A preconditioner, P, is chosen such that P is close to A but easy to solve
    for. The preconditioner parameter required by this routine is
    ``M = P^-1``. The inverse should preferably not be calculated
    explicitly.  Rather, use the following template to produce M::

      # Construct a linear operator that computes P^-1 @ x.
      import scipy.sparse.linalg as spla
      M_x = lambda x: spla.spsolve(P, x)
      M = spla.LinearOperator((n, n), M_x)

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import gmres
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = gmres(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    NzOCannot specify both restart and restrt keywords. Preferably use 'restart' only.zj'gmres' keyword argument 'restrt' is deprecated infavour of 'restart' and will be removed in SciPy 1.12.0.rQ   )r$   a4  scipy.sparse.linalg.gmres called without specifying `callback_type`. The default value will be changed in a future release. For compatibility, specify a value for `callback_type` explicitly, e.g., ``{name}(..., callback_type='pr_norm')``, or to retain the old behavior ``{name}(..., callback_type='legacy')``rR   r"   r%   )rJ   pr_normr%   zUnknown callback_type: {!r}nonerC      gmresrevcomc                      rE   rF   r   r   rG   r   r   rK   z  rL   zgmres.<locals>.<lambda>r   r&   r   g      ?r	   rM   rN   rO   TFrJ   )rx   r%   r!   g      ?gؗҜ<g      ?)
ValueErrorr'   r(   r*   r)   r   rT   minrI   rV   rP   rW   rX   r
   r   r   r   r1   nanr   rY   r   r,   ))rZ   rH   r[   r-   restartr\   r]   r^   restrtr   callback_typemsgr_   r`   ra   rc   rd   r.   Mb_nrm2r/   ptol_max_factorptolr   presidre   rf   rg   work2rh   ri   rj   rk   old_ijob
first_passresid_readyiter_numrl   rm   rn   ro   rp   r   rG   r   r     s   e











<r   c	           !   
      sX   t  d|\ }	}
|du rX|du rXtdrDfdd}fdd}fdd}fd	d
}t j||d}t j||d}ndd }t j||d}t j||d}t}|du rd|d }tjj }tt	|d } fdd}t
||tj|d}|dkr|
dfS |}d}d}td| j}d}d}d}|}	 |}||||||||	\	}}}}}}}}|dur||kr| t|d |d | }t|d |d | } |dkr|dur| n|dkr	||   |9  < ||   | ||  7  < n|dkr&||   |9  < ||   | ||  7  < nl|dkr5|||  ||< n]|dkrD|||  ||< nN|dkrS|||  ||< n?|dkrb|||  ||< n0|dkr}||   |9  < ||   |  7  < n|dkr|rd}d }t|| |\}}d}q|dkr||kr||ks|}|
|fS )!a	  Use Quasi-Minimal Residual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, ndarray, LinearOperator}
        The real-valued N-by-N matrix of the linear system.
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` and ``A^T x`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : ndarray
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : ndarray
        The converged solution.
    info : integer
        Provides convergence information:
            0  : successful exit
            >0 : convergence to tolerance not achieved, number of iterations
            <0 : illegal input or breakdown

    Other Parameters
    ----------------
    x0 : ndarray
        Starting guess for the solution.
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
        The default for ``atol`` is ``'legacy'``, which emulates
        a different legacy behavior.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    maxiter : integer
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M1 : {sparse matrix, ndarray, LinearOperator}
        Left preconditioner for A.
    M2 : {sparse matrix, ndarray, LinearOperator}
        Right preconditioner for A. Used together with the left
        preconditioner M1.  The matrix M1@A@M2 should have better
        conditioned than A alone.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(xk), where xk is the current solution vector.

    See Also
    --------
    LinearOperator

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import qmr
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = qmr(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    Nra   c                         | dS Nleftra   rH   A_r   r   left_psolve!     zqmr.<locals>.left_psolvec                    r   Nrightr   r   r   r   r   right_psolve$  r   zqmr.<locals>.right_psolvec                    r   r   rb   r   r   r   r   left_rpsolve'  r   zqmr.<locals>.left_rpsolvec                    r   r   r   r   r   r   r   right_rpsolve*  r   zqmr.<locals>.right_rpsolve)rI   rU   c                 S   s   | S rF   r   r   r   r   r   id/  s   zqmr.<locals>.idrC   	qmrrevcomc                      s   t j  S rF   )r   r   r   rI   r   )rZ   rH   rJ   r   r   rK   ;  s    zqmr.<locals>.<lambda>r   r&   r   r	   rM      TrQ   rR   r!   rS   rN   rr      F)r   hasattrr   shaperT   rV   rP   rW   rX   r
   r1   r   r   r   r   rY   rI   rU   r   )!rZ   rH   r[   r-   r\   M1M2r^   r   r]   r_   r   r   r   r   r   r`   rc   rd   r/   r   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   r   )rZ   r   rH   rJ   r   r     s   D

 
 





$r   )r2   r3   )NrB   NNNN)	NrB   NNNNNNN)NrB   NNNNN)r9   __all__r'   textwrapr   numpyr   r2   r
   scipy.sparse.linalg._interfacer   utilsr   scipy._lib._utilr   scipy._lib._threadsafetyr   rV   r6   r8   r   r1   rA   r   r   r   r   r   r   r   r   r   r   <module>   sf    )
)	A<AG q